Rat Zinc finger E-box-binding homeobox 1 (Zeb1) ELISA Kit
The Rat ZEB1 (Zinc Finger E-box Binding Homeobox 1) ELISA Kit is a reliable tool for the precise measurement of ZEB1 levels in rat biological samples such as serum, plasma, and cell culture supernatants. With its excellent sensitivity and specificity, this kit provides dependable and consistent results, making it a valuable asset for research in various fields.ZEB1 is a transcription factor that plays a key role in the regulation of genes involved in epithelial-to-mesenchymal transition (EMT) and cancer metastasis.
Its dysregulation has been linked to various diseases, including cancer and fibrosis, making it a promising target for therapeutic interventions.By accurately quantifying ZEB1 levels, researchers can gain insights into the role of this transcription factor in disease progression and potentially identify novel treatment strategies. The Rat ZEB1 ELISA Kit offers a simple and efficient solution for studying ZEB1-mediated pathways and advancing our understanding of complex biological processes.
Product Name:
Rat Zinc finger E-box-binding homeobox 1 (Zeb1) ELISA Kit
Acts as a transcriptional repressor. Binds to E-box sequences in the immunoglobulin heavy chain enhancer as well as in the regulatory regions of many other tissue-specific genes. Represses E-cadherin promoter and induces an epithelial-mesenchymal transition (EMT) by recruiting SMARCA4/BRG1. Represses BCL6 transcription in the presence of the corepressor CTBP1. Positively regulates neuronal differentiation. Represses RCOR1 transcription activation during neurogenesis. Represses transcription by binding to the E box (5'-CANNTG-3'). Promotes tumorigenicity by repressing stemness-inhibiting microRNAs.
Uniprot:
Q62947
Sample Type:
Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids
Specificity:
Natural and recombinant rat Zinc finger E-box-binding homeobox 1
Sub Unit:
Interacts (via N-terminus) with SMARCA4/BRG1.
Subcellular Location:
Nucleus
Storage:
Please see kit components below for exact storage details
Note:
For research use only
UniProt Protein Function:
TCF8: Acts as a transcriptional repressor. Inhibits interleukin-2 (IL-2) gene expression. Enhances or represses the promoter activity of the ATP1A1 gene depending on the quantity of cDNA and on the cell type. Represses E-cadherin promoter and induces an epithelial-mesenchymal transition (EMT) by recruiting SMARCA4/BRG1. Represses BCL6 transcription in the presence of the corepressor CTBP1. Positively regulates neuronal differentiation. Represses RCOR1 transcription activation during neurogenesis. Represses transcription by binding to the E box (5'-CANNTG-3'). Promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Interacts (via N-terminus) with SMARCA4/BRG1. Colocalizes with SMARCA4/BRG1 in E-cadherin- negative cells from established lines, and stroma of normal colon as well as in de-differentiated epithelial cells at the invasion front of colorectal carcinomas. Expressed in heart and skeletal muscle, but not in liver, spleen, or pancreas. Belongs to the delta-EF1/ZFH-1 C2H2-type zinc-finger family.Protein type: C2H2-type zinc finger protein; Motility/polarity/chemotaxis; Transcription, coactivator/corepressor; DNA-bindingCellular Component: cytoplasm; nucleoplasm; nucleus; transcription factor complexMolecular Function: chromatin binding; DNA binding; double-stranded DNA binding; metal ion binding; protein binding; sequence-specific DNA binding; transcription factor activity; transcription factor binding; zinc ion bindingBiological Process: cartilage development; central nervous system development; embryonic camera-type eye morphogenesis; embryonic morphogenesis; embryonic skeletal morphogenesis; forebrain development; negative regulation of cell proliferation; negative regulation of epithelial cell differentiation; negative regulation of transcription from RNA polymerase II promoter; negative regulation of transcription, DNA-dependent; organ development; pattern specification process; positive regulation of neuron differentiation; positive regulation of transcription from RNA polymerase II promoter; regulation of mesenchymal cell proliferation; regulation of smooth muscle cell differentiation; regulation of T cell differentiation in the thymus; regulation of transforming growth factor beta receptor signaling pathway; response to activity; response to nutrient levels; semicircular canal morphogenesis; transcription, DNA-dependent
UniProt Protein Details:
NCBI Summary:
zinc finger and homeodomain protein that binds T3-response elements [RGD, Feb 2006]
Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
Incubator
Deionized or distilled water
Absorbent paper
Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step
1.
Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C.
2.
Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform.
3.
Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper.
4.
Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C.
5.
Repeat the wash process for five times as conducted in step 3.
6.
Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction.
7.
Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
8.
Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters.
9.
After experiment, store all reagents according to the specified storage temperature respectively until their expiry.
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type
Protocol
Serum
If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles.
Plasma
Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit.
Urine & Cerebrospinal Fluid
Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid.
Cell culture supernatant
Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately.
Cell lysates
Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Tissue homogenates
The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C.
Tissue lysates
Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Breast Milk
Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles.