The Rat Annexin A2 (ANXA2) ELISA Kit is a highly sensitive and specific assay designed for the accurate measurement of ANXA2 levels in rat samples including serum, plasma, and cell culture supernatants. This kit offers reliable and reproducible results, providing valuable insights into the role of ANXA2 in various biological processes.ANXA2 is a multifunctional protein involved in a wide range of cellular processes, including membrane trafficking, cell adhesion, and signal transduction.
Dysregulation of ANXA2 has been implicated in various diseases, making it a valuable biomarker for research studies and potential therapeutic development.With its ease of use and high performance, the Rat ANXA2 ELISA Kit is a valuable tool for researchers studying the role of ANXA2 in health and disease.
Product Name:
Rat Annexin A2 (Anxa2) ELISA Kit
SKU:
RTEB1286
Size:
96T
Target:
Rat Annexin A2 (Anxa2)
Synonyms:
Annexin II, Annexin-2, Calpactin I heavy chain, Calpactin-1 heavy chain, Chromobindin-8, Lipocortin II, Placental anticoagulant protein IV, Protein I, p36, PAP-IV, Anx2
Assay Type:
Sandwich
Detection Method:
ELISA
Reactivity:
Rat
Detection Range:
0.78-50ng/mL
Sensitivity:
0.32ng/mL
Intra CV:
Provided with the Kit
Inter CV:
Provided with the Kit
Linearity:
Provided with the Kit
Recovery:
Provided with the Kit
Function:
Calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. May be involved in heat-stress response. Inhibits PCSK9-enhanced LDLR degradation, probably reduces PCSK9 protein levels via a translational mechanism but also competes with LDLR for binding with PCSK9.
Uniprot:
Q07936
Sample Type:
Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids
Specificity:
Natural and recombinant rat Annexin A2
Sub Unit:
Heterotetramer containing 2 light chains of S100A10/p11 and 2 heavy chains of ANXA2/p36 (By similarity). Interacts with ATP1B1 (By similarity). Interacts with DYSF (By similarity). Interacts with COCH. Interacts (via repeat Annexin 1) with PCSK9 (via the C-terminal domain); the interaction inhibits the degradation of LDLR. Interacts with CEACAM1 (via the cytoplasmic domain); this interaction is regulated by phosphorylation of CEACAM1.
Research Area:
Epigenetics
Subcellular Location:
Secreted Extracellular space Extracellular matrix Basement membrane Melanosome In the lamina beneath the plasma membrane.
Storage:
Please see kit components below for exact storage details
Note:
For research use only
UniProt Protein Function:
ANXA2: a calcium-regulated membrane-binding protein whose affinity for calcium is greatly enhanced by anionic phospholipids. It binds two calcium ions with high affinity. Heterotetramer containing 2 light chains of S100A10 2 heavy chains of ANXA2. May cross-link plasma membrane phospholipids with actin and the cytoskeleton and be involved with exocytosis. Annexins are a family of structurally related proteins whose common property is calcium-dependent binding to phospholipids. There are at least ten different annexins in mammalian species. Annexins do not contain signal peptides, yet some annexins (A1, A2 and A5) appear to be secreted in a physiologically regulated fashion.Protein type: Motility/polarity/chemotaxis; Lipid-binding; Calcium-bindingChromosomal Location of Human Ortholog: 15q22.2Cellular Component: extrinsic to plasma membrane; extracellular space; protein complex; cell surface; lysosomal membrane; late endosome membrane; early endosome; lipid particle; cell cortex; lipid raft; extracellular matrix; ruffle; membrane; perinuclear region of cytoplasm; melanosome; plasma membrane; basement membrane; midbody; nucleus; sarcolemma; endosome; vesicleMolecular Function: phosphatidylinositol-4,5-bisphosphate binding; protein binding; calcium-dependent phospholipid binding; phospholipase A2 inhibitor activity; cytoskeletal protein binding; calcium ion binding; calcium-dependent protein binding; Rab GTPase bindingBiological Process: positive regulation of fibroblast proliferation; fibrinolysis; collagen fibril organization; negative regulation of catalytic activity; protein heterotetramerization; positive regulation of vesicle fusion; angiogenesis; positive regulation of binding; positive regulation of protein amino acid phosphorylation; lipid raft formation; body fluid secretion; membrane budding
UniProt Protein Details:
NCBI Summary:
This gene encodes a member of the annexin family. Members of this calcium-dependent phospholipid-binding protein family play a role in the regulation of cellular growth and in signal transduction pathways. This protein functions as an autocrine factor which heightens osteoclast formation and bone resorption. This gene has three pseudogenes located on chromosomes 4, 9 and 10, respectively. Multiple alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Annexin II; Annexin-2; Calpactin I heavy chain; Calpactin-1 heavy chain; Chromobindin-8; Lipocortin II; Placental anticoagulant protein IV; PAP-IV; Protein I; p36
Protein Family:
Annexin
UniProt Gene Name:
ANXA2
UniProt Entry Name:
ANXA2_HUMAN
Component
Quantity (96 Assays)
Storage
ELISA Microplate (Dismountable)
8×12 strips
-20°C
Lyophilized Standard
2
-20°C
Sample Diluent
20ml
-20°C
Assay Diluent A
10mL
-20°C
Assay Diluent B
10mL
-20°C
Detection Reagent A
120µL
-20°C
Detection Reagent B
120µL
-20°C
Wash Buffer
30mL
4°C
Substrate
10mL
4°C
Stop Solution
10mL
4°C
Plate Sealer
5
-
Other materials and equipment required:
Microplate reader with 450 nm wavelength filter
Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
Incubator
Deionized or distilled water
Absorbent paper
Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step
1.
Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C.
2.
Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform.
3.
Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper.
4.
Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C.
5.
Repeat the wash process for five times as conducted in step 3.
6.
Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction.
7.
Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
8.
Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters.
9.
After experiment, store all reagents according to the specified storage temperature respectively until their expiry.
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type
Protocol
Serum
If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles.
Plasma
Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit.
Urine & Cerebrospinal Fluid
Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid.
Cell culture supernatant
Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately.
Cell lysates
Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Tissue homogenates
The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C.
Tissue lysates
Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Breast Milk
Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles.