PKCB (Phospho-Ser661) Colorimetric Cell-Based ELISA Kit
- SKU:
- CBCAB00497
- Product Type:
- ELISA Kit
- ELISA Type:
- Cell Based Phospho Specific
- Research Area:
- Immunology
- Reactivity:
- Human
- Mouse
- Rat
- Detection Method:
- Colorimetric
Description
PKCB (Phospho-Ser661)Colorimetric Cell-Based ELISA Kit
The PKCÎ’ Phospho-Ser661 Colorimetric Cell-Based ELISA Kit is a powerful tool for detecting phosphorylation of PKCÎ’ at Ser661 in cell samples. This kit offers high sensitivity and specificity, providing accurate and reproducible results for research applications in cell signaling and protein phosphorylation studies.PKCÎ’ is a key protein kinase C isoform that plays a critical role in cellular signaling pathways, regulating various cellular processes such as cell growth, differentiation, and apoptosis. Phosphorylation of PKCÎ’ at Ser661 is known to modulate its activity and function, making it a valuable target for studying protein kinase signaling cascades.
By using the PKCÎ’ Phospho-Ser661 Colorimetric Cell-Based ELISA Kit, researchers can uncover important insights into the role of PKCÎ’ phosphorylation in cellular signaling pathways and its implications in various diseases such as cancer, diabetes, and cardiovascular disorders. This kit is easy to use and provides reliable results, making it an essential tool for understanding the complex mechanisms of protein kinase signaling.
Product Name: | PKCB (Phospho-Ser661) Colorimetric Cell-Based ELISA |
Product Code: | CBCAB00497 |
ELISA Type: | Cell-Based |
Target: | PKCB (Phospho-Ser661) |
Reactivity: | Human, Mouse, Rat |
Dynamic Range: | > 5000 Cells |
Detection Method: | Colorimetric 450 nm |
Format: | 2 x 96-Well Microplates |
The PKCB (Phospho-Ser661) Colorimetric Cell-Based ELISA Kit is a convenient, lysate-free, high throughput and sensitive assay kit that can detect PKCB protein phosphorylation and expression profile in cells. The kit can be used for measuring the relative amounts of phosphorylated PKCB in cultured cells as well as screening for the effects that various treatments, inhibitors (ie. siRNA or chemicals), or activators have on PKCB phosphorylation.
Qualitative determination of PKCB (Phospho-Ser661) concentration is achieved by an indirect ELISA format. In essence, PKCB (Phospho-Ser661) is captured by PKCB (Phospho-Ser661)-specific primary antibodies while the HRP-conjugated secondary antibodies bind the Fc region of the primary antibody. Through this binding, the HRP enzyme conjugated to the secondary antibody can catalyze a colorimetric reaction upon substrate addition. Due to the qualitative nature of the Cell-Based ELISA, multiple normalization methods are needed:
1. | A monoclonal antibody specific for human GAPDH is included to serve as an internal positive control in normalizing the target absorbance values. |
2. | Following the colorimetric measurement of HRP activity via substrate addition, the Crystal Violet whole-cell staining method may be used to determine cell density. After staining, the results can be analysed by normalizing the absorbance values to cell amounts, by which the plating difference can be adjusted. |
Database Information: | Gene ID: 5579, UniProt ID: P05771, OMIM: 176970, Unigene: Hs.460355 |
Gene Symbol: | PRKCB |
Sub Type: | Phospho |
UniProt Protein Function: | Calcium-activated, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase involved in various cellular processes such as regulation of the B-cell receptor (BCR) signalosome, oxidative stress-induced apoptosis, androgen receptor-dependent transcription regulation, insulin signaling and endothelial cells proliferation. Plays a key role in B-cell activation by regulating BCR-induced NF-kappa-B activation. Mediates the activation of the canonical NF-kappa-B pathway (NFKB1) by direct phosphorylation of CARD11/CARMA1 at 'Ser-559', 'Ser-644' and 'Ser-652'. Phosphorylation induces CARD11/CARMA1 association with lipid rafts and recruitment of the BCL10-MALT1 complex as well as MAP3K7/TAK1, which then activates IKK complex, resulting in nuclear translocation and activation of NFKB1. Plays a direct role in the negative feedback regulation of the BCR signaling, by down-modulating BTK function via direct phosphorylation of BTK at 'Ser-180', which results in the alteration of BTK plasma membrane localization and in turn inhibition of BTK activity. Involved in apoptosis following oxidative damage: in case of oxidative conditions, specifically phosphorylates 'Ser-36' of isoform p66Shc of SHC1, leading to mitochondrial accumulation of p66Shc, where p66Shc acts as a reactive oxygen species producer. Acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and specifically mediating phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag for epigenetic transcriptional activation that prevents demethylation of histone H3 'Lys-4' (H3K4me) by LSD1/KDM1A. In insulin signaling, may function downstream of IRS1 in muscle cells and mediate insulin-dependent DNA synthesis through the RAF1-MAPK/ERK signaling cascade. May participate in the regulation of glucose transport in adipocytes by negatively modulating the insulin-stimulated translocation of the glucose transporter SLC2A4/GLUT4. Under high glucose in pancreatic beta-cells, is probably involved in the inhibition of the insulin gene transcription, via regulation of MYC expression. In endothelial cells, activation of PRKCB induces increased phosphorylation of RB1, increased VEGFA-induced cell proliferation, and inhibits PI3K/AKT-dependent nitric oxide synthase (NOS3/eNOS) regulation by insulin, which causes endothelial dysfunction. Also involved in triglyceride homeostasis. Phosphorylates ATF2 which promotes cooperation between ATF2 and JUN, activating transcription. |
NCBI Summary: | Protein kinase C (PKC) is a family of serine- and threonine-specific protein kinases that can be activated by calcium and second messenger diacylglycerol. PKC family members phosphorylate a wide variety of protein targets and are known to be involved in diverse cellular signaling pathways. PKC family members also serve as major receptors for phorbol esters, a class of tumor promoters. Each member of the PKC family has a specific expression profile and is believed to play a distinct role in cells. The protein encoded by this gene is one of the PKC family members. This protein kinase has been reported to be involved in many different cellular functions, such as B cell activation, apoptosis induction, endothelial cell proliferation, and intestinal sugar absorption. Studies in mice also suggest that this kinase may also regulate neuronal functions and correlate fear-induced conflict behavior after stress. Alternatively spliced transcript variants encoding distinct isoforms have been reported. [provided by RefSeq, Jul 2008] |
UniProt Code: | P05771 |
NCBI GenInfo Identifier: | 20141488 |
NCBI Gene ID: | 5579 |
NCBI Accession: | P05771.4 |
UniProt Secondary Accession: | P05771,O43744, P05127, Q15138, Q93060, Q9UE49, Q9UE50 Q9UEH8, Q9UJ30, Q9UJ33, C5IFJ8, D3DWF5, |
UniProt Related Accession: | P05771 |
Molecular Weight: | 77,012 Da |
NCBI Full Name: | Protein kinase C beta type |
NCBI Synonym Full Names: | protein kinase C beta |
NCBI Official Symbol: | PRKCBÂ Â |
NCBI Official Synonym Symbols: | PKCB; PRKCB1; PRKCB2; PKC-beta  |
NCBI Protein Information: | protein kinase C beta type |
UniProt Protein Name: | Protein kinase C beta type |
Protein Family: | Protein kinase |
UniProt Gene Name: | PRKCBÂ Â |
UniProt Entry Name: | KPCB_HUMAN |
Component | Quantity |
96-Well Cell Culture Clear-Bottom Microplate | 2 plates |
10X TBS | 24 mL |
Quenching Buffer | 24 mL |
Blocking Buffer | 50 mL |
15X Wash Buffer | 50 mL |
Primary Antibody Diluent | 12 mL |
100x Anti-Phospho Target Antibody | 60 µL |
100x Anti-Target Antibody | 60 µL |
Anti-GAPDH Antibody | 60 µL |
HRP-Conjugated Anti-Rabbit IgG Antibody | 12 mL |
HRP-Conjugated Anti-Mouse IgG Antibody | 12 mL |
SDS Solution | 12 mL |
Stop Solution | 24 mL |
Ready-to-Use Substrate | 12 mL |
Crystal Violet Solution | 12 mL |
Adhesive Plate Seals | 2 seals |
The following materials and/or equipment are NOT provided in this kit but are necessary to successfully conduct the experiment:
- Microplate reader able to measure absorbance at 450 nm and/or 595 nm for Crystal Violet Cell Staining (Optional)
- Micropipettes with capability of measuring volumes ranging from 1 µL to 1 ml
- 37% formaldehyde (Sigma Cat# F-8775) or formaldehyde from other sources
- Squirt bottle, manifold dispenser, multichannel pipette reservoir or automated microplate washer
- Graph paper or computer software capable of generating or displaying logarithmic functions
- Absorbent papers or vacuum aspirator
- Test tubes or microfuge tubes capable of storing ≥1 ml
- Poly-L-Lysine (Sigma Cat# P4832 for suspension cells)
- Orbital shaker (optional)
- Deionized or sterile water
*Note: Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Step | Procedure |
1. | Seed 200 µL of 20,000 adherent cells in culture medium in each well of a 96-well plate. The plates included in the kit are sterile and treated for cell culture. For suspension cells and loosely attached cells, coat the plates with 100 µL of 10 µg/ml Poly-L-Lysine (not included) to each well of a 96-well plate for 30 minutes at 37°C prior to adding cells. |
2. | Incubate the cells for overnight at 37°C, 5% CO2. |
3. | Treat the cells as desired. |
4. | Remove the cell culture medium and rinse with 200 µL of 1x TBS, twice. |
5. | Fix the cells by incubating with 100 µL of Fixing Solution for 20 minutes at room temperature. The 4% formaldehyde is used for adherent cells and 8% formaldehyde is used for suspension cells and loosely attached cells. |
6. | Remove the Fixing Solution and wash the plate 3 times with 200 µL 1x Wash Buffer for five minutes each time with gentle shaking on the orbital shaker. The plate can be stored at 4°C for a week. |
7. | Add 100 µL of Quenching Buffer and incubate for 20 minutes at room temperature. |
8. | Wash the plate 3 times with 1x Wash Buffer for 5 minutes each time. |
9. | Add 200 µL of Blocking Buffer and incubate for 1 hour at room temperature. |
10. | Wash 3 times with 200 µL of 1x Wash Buffer for 5 minutes each time. |
11. | Add 50 µL of 1x primary antibodies Anti-PKCB (Phospho-Ser661) Antibody, Anti-PKCB Antibody and/or Anti-GAPDH Antibody) to the corresponding wells, cover with Parafilm and incubate for 16 hours (overnight) at 4°C. If the target expression is known to be high, incubate for 2 hours at room temperature. |
12. | Wash 3 times with 200 µL of 1x Wash Buffer for 5 minutes each time. |
13. | Add 50 µL of 1x secondary antibodies (HRP-Conjugated AntiRabbit IgG Antibody or HRP-Conjugated Anti-Mouse IgG Antibody) to corresponding wells and incubate for 1.5 hours at room temperature. |
14. | Wash 3 times with 200 µL of 1x Wash Buffer for 5 minutes each time. |
15. | Add 50 µL of Ready-to-Use Substrate to each well and incubate for 30 minutes at room temperature in the dark. |
16. | Add 50 µL of Stop Solution to each well and read OD at 450 nm immediately using the microplate reader. |
(Additional Crystal Violet staining may be performed if desired – details of this may be found in the kit technical manual.)