Mouse Vascular endothelial growth factor A (Vegfa) ELISA Kit (MOEB0136)
- SKU:
- MOEB0136
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- Q00731
- Range:
- 15.6-1000 pg/mL
- ELISA Type:
- Sandwich
- Synonyms:
- VEGF, Vascular Endothelial Cell Growth Factor, VAS, Vasculotropin, VEGFA, VPF, MVCD1, vascular endothelial growth factor A, Vascular permeability factor, VEGF-A
- Reactivity:
- Mouse
Description
Mouse Vascular endothelial growth factor A (Vegfa) ELISA Kit
The Mouse Vascular Endothelial Growth Factor-A (VEGFA) ELISA Kit is a powerful tool for accurately measuring VEGFA levels in mouse serum, plasma, and cell culture supernatants. With its high sensitivity and specificity, this kit delivers dependable and consistent results, making it an excellent choice for various research applications. VEGFA is a key player in angiogenesis, the process of blood vessel formation essential for normal development and tissue repair.
Dysregulation of VEGFA is implicated in various diseases, including cancer, ischemic diseases, and inflammatory conditions. By accurately measuring VEGFA levels, researchers can gain valuable insights into disease mechanisms and potential therapeutic strategies.
Product Name: | Mouse Vascular endothelial growth factor A (Vegfa) ELISA Kit |
SKU: | MOEB0136 |
Size: | 96T |
Target: | Mouse Vascular endothelial growth factor A (Vegfa) |
Synonyms: | Vascular permeability factor, VPF, VEGF-A, Vegf |
Assay Type: | Sandwich |
Detection Method: | ELISA |
Reactivity: | Mouse |
Detection Range: | 15.6-1000pg/mL |
Sensitivity: | 4.16pg/mL |
Intra CV: | 5.1% | ||||||||||||||||||||
Inter CV: | 10.5% | ||||||||||||||||||||
Linearity: |
| ||||||||||||||||||||
Recovery: |
| ||||||||||||||||||||
Function: | Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. May play a role in increasing vascular permeability during lactation, when increased transport of molecules from the blood is required for efficient milk protein synthesis (By similarity). Binding to NRP1 receptor initiates a signaling pathway needed for motor neuron axon guidance and cell body migration, including for the caudal migration of facial motor neurons from rhombomere 4 to rhombomere 6 during embryonic development (PubMed:26503042). |
Uniprot: | Q00731 |
Sample Type: | Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids |
Specificity: | Natural and recombinant mouse Vascular endothelial growth factor A |
Sub Unit: | Homodimer; disulfide-linked. Also found as heterodimer with PGF (By similarity). Interacts with NRP1 (PubMed:26503042). |
Research Area: | Cancer |
Subcellular Location: | Isoform VEGF-3 Cell membrane Peripheral membrane protein Remains cell-surface associated unless released by heparin. |
Storage: | Please see kit components below for exact storage details |
Note: | For research use only |
UniProt Protein Function: | VEGF: Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145. Isoform VEGF165B binds to KDR but does not activate downstream signaling pathways, does not activate angiogenesis and inhibits tumor growth. Defects in VEGFA are a cause of susceptibility to microvascular complications of diabetes type 1 (MVCD1). These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. Belongs to the PDGF/VEGF growth factor family. 13 isoforms of the human protein are produced by alternative promoter. |
UniProt Protein Details: | Protein type:Secreted; Secreted, signal peptide; Motility/polarity/chemotaxis; Cytokine Cellular Component: basement membrane; cell surface; cytoplasm; extracellular region; extracellular space; membrane; nucleus; plasma membrane; secretory granule Molecular Function:chemoattractant activity; cytokine activity; extracellular matrix binding; fibronectin binding; growth factor activity; growth factor binding; heparin binding; identical protein binding; platelet-derived growth factor receptor binding; protein binding; protein heterodimerization activity; protein homodimerization activity; receptor agonist activity; receptor binding; vascular endothelial growth factor receptor 1 binding; vascular endothelial growth factor receptor 2 binding; vascular endothelial growth factor receptor binding Biological Process: activation of CREB transcription factor; activation of protein kinase activity; alveolus development; angiogenesis; artery morphogenesis; basophil chemotaxis; blood vessel development; blood vessel endothelial cell proliferation during sprouting angiogenesis; blood vessel morphogenesis; blood vessel remodeling; branching morphogenesis of a tube; camera-type eye morphogenesis; cardiac muscle fiber development; cell differentiation; cell maturation; cell migration; cell migration during sprouting angiogenesis; cell proliferation; endothelial cell migration; epithelial cell differentiation; eye photoreceptor cell development; growth; heart morphogenesis; homeostasis of number of cells within a tissue; in utero embryonic development; induction of positive chemotaxis; kidney development; lactation; lumen formation; lung development; lymphangiogenesis; macrophage differentiation; mesoderm development; monocyte differentiation; mRNA stabilization; multicellular organismal development; negative regulation of apoptosis; negative regulation of bone resorption; negative regulation of caspase activity; negative regulation of cell-cell adhesion; negative regulation of fat cell differentiation; negative regulation of neuron apoptosis; negative regulation of programmed cell death; negative regulation of transcription from RNA polymerase II promoter; nervous system development; neuron development; ovarian follicle development; patterning of blood vessels; positive chemotaxis; positive regulation of angiogenesis; positive regulation of axon extension involved in axon guidance; positive regulation of blood vessel endothelial cell migration; positive regulation of cell adhesion; positive regulation of cell division; positive regulation of cell migration; positive regulation of cell motility; positive regulation of cell proliferation; positive regulation of endothelial cell proliferation; positive regulation of epithelial cell proliferation; positive regulation of focal adhesion formation; positive regulation of MAP kinase activity; positive regulation of mesenchymal cell proliferation; positive regulation of neuroblast proliferation; positive regulation of osteoblast differentiation; positive regulation of peptidyl-serine phosphorylation; positive regulation of peptidyl-tyrosine phosphorylation; positive regulation of positive chemotaxis; positive regulation of protein amino acid autophosphorylation; positive regulation of protein amino acid phosphorylation; positive regulation of protein complex assembly; positive regulation of protein kinase B signaling cascade; positive regulation of receptor internalization; positive regulation of signal transduction; positive regulation of smooth muscle cell proliferation; positive regulation of transcription from RNA polymerase II promoter; positive regulation of vascular endothelial growth factor receptor signaling pathway; positive regulation of vascular permeability; post-embryonic camera-type eye development; regulation of cell shape; regulation of cGMP metabolic process; regulation of endothelial cell differentiation; regulation of transcription from RNA polymerase II promoter; response to hypoxia; sprouting angiogenesis; surfactant homeostasis; T-helper 1 type immune response; vascular endothelial growth factor receptor signaling pathway; vasculature development |
NCBI Summary: | This gene is a member of the PDGF/VEGF growth factor family. It encodes a heparin-binding protein, which exists as a disulfide-linked homodimer. This growth factor induces proliferation and migration of vascular endothelial cells, and is essential for both physiological and pathological angiogenesis. Disruption of this gene in mice resulted in abnormal embryonic blood vessel formation. This gene is upregulated in many known tumors and its expression is correlated with tumor stage and progression. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. There is also evidence for alternative translation initiation from upstream non-AUG (CUG) codons resulting in additional isoforms. A recent study showed that a C-terminally extended isoform is produced by use of an alternative in-frame translation termination codon via a stop codon readthrough mechanism, and that this isoform is antiangiogenic. Expression of some isoforms derived from the AUG start codon is regulated by a small upstream open reading frame, which is located within an internal ribosome entry site.[provided by RefSeq, Nov 2015] |
UniProt Code: | Q00731 |
NCBI GenInfo Identifier: | 1718156 |
NCBI Gene ID: | 22339 |
NCBI Accession: | Q00731.2 |
UniProt Secondary Accession: | Q00731,O70123, Q66S31, Q6GT23, Q6WZL9, |
UniProt Related Accession: | Q00731 |
Molecular Weight: | 40,288 Da |
NCBI Full Name: | Vascular endothelial growth factor A |
NCBI Synonym Full Names: | vascular endothelial growth factor A |
NCBI Official Symbol: | Vegfa |
NCBI Official Synonym Symbols: | Vpf; Vegf |
NCBI Protein Information: | vascular endothelial growth factor A |
UniProt Protein Name: | Vascular endothelial growth factor A |
UniProt Synonym Protein Names: | Vascular permeability factor; VPF |
Protein Family: | VEGF coregulated chemokine |
UniProt Gene Name: | Vegfa |
UniProt Entry Name: | VEGFA_MOUSE |
Component | Quantity (96 Assays) | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | -20°C |
Lyophilized Standard | 2 | -20°C |
Sample Diluent | 20ml | -20°C |
Assay Diluent A | 10mL | -20°C |
Assay Diluent B | 10mL | -20°C |
Detection Reagent A | 120µL | -20°C |
Detection Reagent B | 120µL | -20°C |
Wash Buffer | 30mL | 4°C |
Substrate | 10mL | 4°C |
Stop Solution | 10mL | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step | |
1. | Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C. |
2. | Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform. |
3. | Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper. |
4. | Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C. |
5. | Repeat the wash process for five times as conducted in step 3. |
6. | Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction. |
7. | Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing. |
8. | Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters. |
9. | After experiment, store all reagents according to the specified storage temperature respectively until their expiry. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |