The Mouse Serine-Arginine Rich Splicing Factor 1 (SRSF1) ELISA Kit is specifically designed for the accurate quantification of SRSF1 levels in mouse serum, plasma, and cell culture supernatants. With its high sensitivity and specificity, this kit provides researchers with reliable and reproducible results, making it an invaluable tool for various research applications.SRSF1 is a key protein involved in RNA splicing, playing a crucial role in gene expression regulation and mRNA processing. Dysregulation of SRSF1 has been implicated in various diseases, including cancer, neurological disorders, and autoimmune conditions, highlighting its significance as a potential therapeutic target and biomarker for disease progression.
By utilizing the Mouse SRSF1 ELISA Kit, researchers can gain valuable insights into the role of SRSF1 in disease pathogenesis and its potential as a therapeutic target, ultimately advancing our understanding of disease mechanisms and guiding the development of novel treatment strategies.
Plays a role in preventing exon skipping, ensuring the accuracy of splicing and regulating alternative splicing. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5'- and 3'-splice site binding components, U1 snRNP and U2AF. Can stimulate binding of U1 snRNP to a 5'-splice site-containing pre-mRNA. Binds to purine-rich RNA sequences, either the octamer, 5'-RGAAGAAC-3' (r=A or G) or the decamers, AGGACAGAGC/AGGACGAAGC. Binds preferentially to the 5'-CGAGGCG-3' motif in vitro. Three copies of the octamer constitute a powerful splicing enhancer in vitro, the ASF/SF2 splicing enhancer (ASE) which can specifically activate ASE-dependent splicing (By similarity). Specifically regulates alternative splicing of cardiac isoforms of CAMK2D, LDB3/CYPHER and TNNT2/CTNT during heart remodeling at the juvenile to adult transition. The inappropriate accumulation of a neonatal and neuronal isoform of CAMKD2 in the adult heart results in aberrant calcium handling and defective excitation-contraction coupling in cardiomyocytes. May function as export adapter involved in mRNA nuclear export through the TAP/NXF1 pathway.
Uniprot:
Q6PDM2
Sample Type:
Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids
Specificity:
Natural and recombinant mouse Serine/arginine-rich splicing factor 1
Sub Unit:
Consists of two polypeptides of p32 and p33. In vitro, self-associates and binds SRSF2, SNRNP70 and U2AF1 but not U2AF2. Binds SREK1/SFRS12. Interacts with SAFB/SAFB1. Interacts with PSIP1/LEDGF. Identified in the spliceosome C complex. Interacts with RSRC1 (via Arg/Ser-rich domain). Interacts with ZRSR2/U2AF1-RS2. Interacts with CCDC55 (via C-terminus) (By similarity). Interacts with SRPK1 and a sliding docking interaction is essential for its sequential and processive phosphorylation by SRPK1. Interacts with NXF1 (By similarity). Interacts with CCNL1, CCNL2 and CDK11B.
Subcellular Location:
Cytoplasm Nucleus speckle In nuclear speckles. Shuttles between the nucleus and the cytoplasm.
Storage:
Please see kit components below for exact storage details
Note:
For research use only
UniProt Protein Function:
SF2: a serine-arginine-rich splicing regulatory protein. Plays a role in preventing exon skipping, ensuring the accuracy of splicing and regulating alternative splicing. Interacts with other spliceosomal components, via the RS domains, to form a bridge between the 5' and 3' splice site binding components, U1 snRNP and U2AF. Can stimulate binding of U1 snRNP to a 5'-splice-site-containing pre-mRNA. Extensively phosphorylated on serine residues in the serine-arginine rich region. Three splice variant isoforms have been described. ASF/SF2 splicing enhancer (ASE) which can specifically activate ASE-dependent splicing. Isoform ASF-2 and isoform ASF-3 act as splicing repressors.Protein type: RNA-binding; RNA splicing; SpliceosomeChromosomal Location of Human Ortholog: 17q22Cellular Component: nucleoplasm; cytoplasm; nuclear speck; nucleusMolecular Function: mRNA binding; protein binding; RS domain binding; RNA binding; nucleotide bindingBiological Process: transcription from RNA polymerase II promoter; in utero embryonic development; RNA splicing; regulation of mRNA stability; regulation of translation; nuclear mRNA splicing, via spliceosome; nuclear mRNA 5'-splice site recognition; mRNA splice site selection; regulation of nuclear mRNA splicing, via spliceosome; mRNA export from nucleus; regulation of transcription, DNA-dependent; gene expression; mRNA 3'-end processing; mRNA processing; termination of RNA polymerase II transcription; cardiac muscle contraction
UniProt Protein Details:
NCBI Summary:
This gene encodes a member of the arginine/serine-rich splicing factor protein family. The encoded protein can either activate or repress splicing, depending on its phosphorylation state and its interaction partners. Multiple transcript variants have been found for this gene. There is a pseudogene of this gene on chromosome 13. [provided by RefSeq, Jun 2014]
Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
Incubator
Deionized or distilled water
Absorbent paper
Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step
1.
Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C.
2.
Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform.
3.
Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper.
4.
Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C.
5.
Repeat the wash process for five times as conducted in step 3.
6.
Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction.
7.
Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
8.
Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters.
9.
After experiment, store all reagents according to the specified storage temperature respectively until their expiry.
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type
Protocol
Serum
If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles.
Plasma
Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit.
Urine & Cerebrospinal Fluid
Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid.
Cell culture supernatant
Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately.
Cell lysates
Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Tissue homogenates
The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C.
Tissue lysates
Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Breast Milk
Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles.