Mouse Protein O-mannosyl-transferase 1 (Pomt1) ELISA Kit
The Mouse POMT1 (Protein O-Mannosyl Transferase 1) ELISA Kit is specifically designed for the precise detection of POMT1 levels in mouse serum, plasma, and cell culture supernatants. This kit boasts exceptional sensitivity and specificity, ensuring accurate and consistent results for a variety of research applications.POMT1 is a vital enzyme involved in the process of protein glycosylation, playing a crucial role in protein structure and function. Dysregulation of POMT1 has been implicated in various diseases, including congenital muscular dystrophies and other genetic disorders.
As such, this kit serves as a valuable tool for investigating the role of POMT1 in disease pathology and potential therapeutic interventions.Don't miss out on the opportunity to advance your research with the Mouse POMT1 ELISA Kit from Assay Genie. Order yours today and unlock new insights into the molecular mechanisms underlying disease processes.
Product Name:
Mouse Protein O-mannosyl-transferase 1 (Pomt1) ELISA Kit
Transfers mannosyl residues to the hydroxyl group of serine or threonine residues.
Uniprot:
Q8R2R1
Sample Type:
Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids
Specificity:
Natural and recombinant mouse Protein O-mannosyl-transferase 1
Research Area:
Cell Biology
Subcellular Location:
Endoplasmic reticulum membrane Multi-pass membrane protein
Storage:
Please see kit components below for exact storage details
Note:
For research use only
UniProt Protein Function:
POMT1: Transfers mannosyl residues to the hydroxyl group of serine or threonine residues. Coexpression of both POMT1 and POMT2 is necessary for enzyme activity, expression of either POMT1 or POMT2 alone is insufficient. Defects in POMT1 are the cause of muscular dystrophy- dystroglycanopathy congenital with mental retardation type B1 (MDDGB1); also called muscular dystrophy congenital POMT1-related. MDDGB1 is an autosomal recessive disorder characterized by congenital muscular dystrophy associated with mental retardation and mild structural brain abnormalities. Defects in POMT1 are the cause of muscular dystrophy- dystroglycanopathy congenital with brain and eye anomalies type A1 (MDDGA1); also known as hydrocephalus-agyria-retinal dysplasia or HARD syndrome. MDDGA1 is an autosomal recessive disorder characterized by cobblestone lissencephaly, hydrocephalus, agyria, retinal displasia, with or without encephalocele. It is often associated with congenital muscular dystrophy and usually lethal within the first few months of life. Included diseases are the more severe Walker-Warburg syndrome and the slightly less severe muscle-eye-brain disease. Defects in POMT1 are the cause of muscular dystrophy- dystroglycanopathy limb-girdle type C1 (MDDGC1); also called autosomal recessive limb-girdle muscular dystrophy with mental retardation. MDDGC1 is a novel form of recessive limb girdle muscular dystrophy with mild mental retardation without any obvious structural brain abnormality, associated with an abnormal alpha-dystroglycan pattern in the muscle. MDDGC1 is a significantly milder allelic form of WWS. Belongs to the glycosyltransferase 39 family. 4 isoforms of the human protein are produced by alternative splicing.Protein type: Membrane protein, integral; Transferase; Membrane protein, multi-pass; Glycan Metabolism - O-mannosyl glycan biosynthesis; EC 2.4.1.109Cellular Component: endoplasmic reticulum membrane; sarcoplasmic reticulum; membrane; endoplasmic reticulum; integral to membrane; acrosomeMolecular Function: transferase activity; transferase activity, transferring glycosyl groups; mannosyltransferase activity; dolichyl-phosphate-mannose-protein mannosyltransferase activityBiological Process: protein amino acid O-linked glycosylation; extracellular matrix organization and biogenesis
Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
Incubator
Deionized or distilled water
Absorbent paper
Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step
1.
Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C.
2.
Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform.
3.
Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper.
4.
Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C.
5.
Repeat the wash process for five times as conducted in step 3.
6.
Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction.
7.
Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
8.
Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters.
9.
After experiment, store all reagents according to the specified storage temperature respectively until their expiry.
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type
Protocol
Serum
If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles.
Plasma
Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit.
Urine & Cerebrospinal Fluid
Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid.
Cell culture supernatant
Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately.
Cell lysates
Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Tissue homogenates
The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C.
Tissue lysates
Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Breast Milk
Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles.