The Mouse Polyubiquitin B (UBB) ELISA Kit is specifically designed for the precise detection of UBB levels in mouse serum, plasma, and cell culture supernatants. This kit is known for its high sensitivity and specificity, ensuring accurate and consistent results, which makes it perfect for a variety of research applications.Polyubiquitin B (UBB) is an important protein involved in the ubiquitin-proteasome system, playing a key role in protein degradation and turnover.
Changes in UBB levels have been linked to various diseases, making it a valuable biomarker for studying these conditions and potential therapeutic interventions.The Mouse Polyubiquitin B (UBB) ELISA Kit is easy to use and provides quick results, making it an essential tool for researchers studying protein degradation pathways and their implications in disease development and progression.
Product Name:
Mouse Polyubiquitin-B (Ubb) ELISA Kit
SKU:
MOEB0153
Size:
96T
Target:
Mouse Polyubiquitin-B (Ubb)
Synonyms:
Polyubiquitin-B, Ubb
Assay Type:
Sandwich
Detection Method:
ELISA
Reactivity:
Mouse
Detection Range:
0.312-20ng/mL
Sensitivity:
0.183ng/mL
Intra CV:
6.4%
Inter CV:
8.4%
Linearity:
Sample
1:2
1:4
1:8
1:16
Serum(N=5)
105-115%
96-106%
116-126%
98-106%
EDTA Plasma(N=5)
106-116%
82-92%
104-113%
90-99%
Heparin Plasma(N=5)
108-117%
100-112%
101-110%
91-99%
Recovery:
Sample Type
Average(%)
Recovery Range(%)
Serum
105
99-111
Plasma
107
101-113
Function:
Ubiquitin: Exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling.
Uniprot:
P0CG49
Sample Type:
Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids
Specificity:
Natural and recombinant mouse Polyubiquitin-B
Research Area:
Neurosciences
Subcellular Location:
Cytoplasm Nucleus
Storage:
Please see kit components below for exact storage details
Note:
For research use only
UniProt Protein Function:
UBB: Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, DNA-damage responses as well as in signaling processes leading to activation of the transcription factor NF-kappa-B. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling. Belongs to the ubiquitin family.Protein type: Apoptosis; Ubiquitin-like modifier; Cell development/differentiation; Cell cycle regulation; Transcription regulation; Motility/polarity/chemotaxisChromosomal Location of Human Ortholog: 17p12-p11.2Cellular Component: nucleoplasm; neuron projection; cell soma; mitochondrion; plasma membrane; endosome membrane; cytosolMolecular Function: protein bindingBiological Process: circadian rhythm; I-kappaB kinase/NF-kappaB cascade; negative regulation of ubiquitin-protein ligase activity during mitotic cell cycle; protein polyubiquitination; nerve growth factor receptor signaling pathway; viral reproduction; positive regulation of apoptosis; activation of MAPK activity; stress-activated MAPK cascade; toll-like receptor 3 signaling pathway; endosome transport; T cell receptor signaling pathway; DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest; activation of NF-kappaB transcription factor; mitochondrion transport along microtubule; regulation of apoptosis; toll-like receptor 5 signaling pathway; antigen processing and presentation of peptide antigen via MHC class I; regulation of mitochondrial membrane potential; transforming growth factor beta receptor signaling pathway; JNK cascade; antigen processing and presentation of exogenous peptide antigen via MHC class I; G2/M transition of mitotic cell cycle; toll-like receptor 4 signaling pathway; regulation of interferon type I production; glycogen biosynthetic process; fibroblast growth factor receptor signaling pathway; positive regulation of I-kappaB kinase/NF-kappaB cascade; transcription, DNA-dependent; antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent; glucose metabolic process; Notch receptor processing; virus assembly; toll-like receptor 2 signaling pathway; carbohydrate metabolic process; viral protein processing; positive regulation of transcription from RNA polymerase II promoter; toll-like receptor 9 signaling pathway; negative regulation of interferon type I production; negative regulation of apoptosis; G1/S transition of mitotic cell cycle; positive regulation of ubiquitin-protein ligase activity during mitotic cell cycle; negative regulation of epidermal growth factor receptor signaling pathway; apoptosis; pathogenesis; negative regulation of transcription from RNA polymerase II promoter; viral infectious cycle; toll-like receptor 10 signaling pathway; anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process; positive regulation of interferon type I production; transmembrane transport; epidermal growth factor receptor signaling pathway; transcription initiation from RNA polymerase II promoter; Notch signaling pathway; cytokine and chemokine mediated signaling pathway; MyD88-independent toll-like receptor signaling pathway; DNA repair; MyD88-dependent toll-like receptor signaling pathway; regulation of ubiquitin-protein ligase activity during mitotic cell cycle; toll-like receptor signaling pathway; innate immune response; gene expression; mitotic cell cycle; negative regulation of transforming growth factor beta receptor signaling pathway; neurite morphogenesisDisease: Cleft Palate, Isolated
UniProt Protein Details:
NCBI Summary:
This gene encodes ubiquitin, one of the most conserved proteins known. Ubiquitin has a major role in targeting cellular proteins for degradation by the 26S proteosome. It is also involved in the maintenance of chromatin structure, the regulation of gene expression, and the stress response. Ubiquitin is synthesized as a precursor protein consisting of either polyubiquitin chains or a single ubiquitin moiety fused to an unrelated protein. This gene consists of three direct repeats of the ubiquitin coding sequence with no spacer sequence. Consequently, the protein is expressed as a polyubiquitin precursor with a final amino acid after the last repeat. An aberrant form of this protein has been detected in patients with Alzheimer's disease and Down syndrome. Pseudogenes of this gene are located on chromosomes 1, 2, 13, and 17. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2013]
Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
Incubator
Deionized or distilled water
Absorbent paper
Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step
1.
Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C.
2.
Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform.
3.
Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper.
4.
Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C.
5.
Repeat the wash process for five times as conducted in step 3.
6.
Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction.
7.
Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
8.
Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters.
9.
After experiment, store all reagents according to the specified storage temperature respectively until their expiry.
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type
Protocol
Serum
If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles.
Plasma
Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit.
Urine & Cerebrospinal Fluid
Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid.
Cell culture supernatant
Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately.
Cell lysates
Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Tissue homogenates
The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C.
Tissue lysates
Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Breast Milk
Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles.