Mouse Histone H2A.x (H2afx) ELISA Kit (MOEB1415)
- SKU:
- MOEB1415
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- P27661
- Range:
- 31.2-2000 pg/mL
- ELISA Type:
- Sandwich
- Synonyms:
- H2afx, H2a, x, H2AFX, H2AX, Histone H2A.X
- Reactivity:
- Mouse
Description
Mouse Histone H2A.x (H2afx) ELISA Kit
The Mouse Histone H2A.X (H2AFX) ELISA Kit is specifically designed for the sensitive and accurate detection of histone H2A.X levels in mouse samples, including serum, plasma, and cell culture supernatants. This kit offers high specificity and reproducibility, ensuring reliable results for various research applications.Histone H2A.X is a key protein involved in DNA damage response and repair processes. Studies have shown its importance in maintaining genomic stability and preventing mutations that can lead to diseases such as cancer.
By measuring histone H2A.X levels, researchers can gain valuable insights into DNA damage mechanisms and potential therapeutic targets for various diseases.Overall, the Mouse Histone H2A.X (H2AFX) ELISA Kit is a valuable tool for researchers studying DNA damage, genomic stability, and related diseases in mouse models. Its high sensitivity and accuracy make it a reliable choice for uncovering new insights into cellular processes and potential treatment avenues.
Product Name: | Mouse Histone H2A.x (H2afx) ELISA Kit |
SKU: | MOEB1415 |
Size: | 96T |
Target: | Mouse Histone H2A.x (H2afx) |
Synonyms: | Histone H2A.X, H2a/x, H2a.x, H2ax, Hist5-2ax |
Assay Type: | Sandwich |
Detection Method: | ELISA |
Reactivity: | Mouse |
Detection Range: | 31.2-2000pg/mL |
Sensitivity: | 15.61pg/mL |
Intra CV: | 4.3% | ||||||||||||||||||||
Inter CV: | 7.5% | ||||||||||||||||||||
Linearity: |
| ||||||||||||||||||||
Recovery: |
| ||||||||||||||||||||
Function: | Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Required for checkpoint-mediated arrest of cell cycle progression in response to low doses of ionizing radiation and for efficient repair of DNA double strand breaks (DSBs) specifically when modified by C-terminal phosphorylation. |
Uniprot: | P27661 |
Sample Type: | Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids |
Specificity: | Natural and recombinant mouse Histone H2AX |
Sub Unit: | The nucleosome is a histone octamer containing two molecules each of H2A, H2B, H3 and H4 assembled in one H3-H4 heterotetramer and two H2A-H2B heterodimers. The octamer wraps approximately 147 bp of DNA. May interact with numerous proteins required for DNA damage signaling and repair when phosphorylated on Ser-140. These include MDC1, TP53BP1 and the MRN complex, composed of MRE11, RAD50, and NBN. Interaction with the MRN complex is likely mediated at least in part by NBN. May also interact with DHX9/NDHII when phosphorylated on Ser-140 and MCPH1 when phosphorylated at Ser-140 or Tyr-143. |
Research Area: | Epigenetics |
Subcellular Location: | Nucleus Chromosome |
Storage: | Please see kit components below for exact storage details |
Note: | For research use only |
UniProt Protein Function: | H2AX: a histone that replaces conventional H2A in a subset of nucleosomes. Required for checkpoint-mediated arrest of cell cycle progression in response to low doses of ionizing radiation and for efficient repair of DNA double strand breaks (DSBs) specifically when modified by C-terminal phosphorylation. Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Phosphorylated on S139 by ATM and DNA-PK in response to DNA double strand breaks (DSBs) generated by exogenous genotoxic agents and by stalled replication forks, and may also occur during meiotic recombination events and immunoglobulin class switching in lymphocytes. Phosphorylation can extend up to several thousand nucleosomes from the actual site of the DSB and may mark the surrounding chromatin for recruitment of proteins required for DNA damage signaling and repair. Widespread phosphorylation may also serve to amplify the damage signal or aid repair of persistent lesions. Dephosphorylation of S139 by PP2A is required for DNA DSB repair. Apparently phosphorylated on Y143 by WSTF, determining the relative recruitment of either DNA repair or pro-apoptotic factors. H2AXpY142 favors the recruitment of pro-apoptotic factors APBB1 and JNK1. In contrast, dephosphorylation of pY143 by EYA phosphatases favors the recruitment of MDC1-containing DNA repair complexes to the tail of phosphorylated pS139. Monoubiquitination of K119 by RING1 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression. Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'K63' linkages by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. |
UniProt Protein Details: | Protein type:DNA-binding; Helicase; DNA repair, damage Cellular Component: chromatin; chromosome; chromosome, telomeric region; condensed nuclear chromosome; male germ cell nucleus; nuclear chromatin; nucleoplasm; nucleosome; nucleus; replication fork; XY body Molecular Function:damaged DNA binding; DNA binding; enzyme binding; histone binding; protein binding; protein heterodimerization activity Biological Process: cell cycle; chromatin silencing; DNA damage checkpoint; DNA recombination; DNA repair; double-strand break repair via homologous recombination; meiotic cell cycle; response to DNA damage stimulus; spermatogenesis |
NCBI Summary: | Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes. The linker histone, H1, interacts with linker DNA between nucleosomes and functions in the compaction of chromatin into higher order structures. This gene encodes a replication-independent histone that is a member of the histone H2A family. [provided by RefSeq, Nov 2015] |
UniProt Code: | P27661 |
NCBI GenInfo Identifier: | 121993 |
NCBI Gene ID: | 15270 |
NCBI Accession: | P27661.2 |
UniProt Related Accession: | P27661 |
Molecular Weight: | 15,143 Da |
NCBI Full Name: | Histone H2AX |
NCBI Synonym Full Names: | H2A histone family, member X |
NCBI Official Symbol: | H2afx |
NCBI Official Synonym Symbols: | H2ax; H2A.X; AW228881; Hist5-2ax; gammaH2ax |
NCBI Protein Information: | histone H2AX |
UniProt Protein Name: | Histone H2AX |
UniProt Synonym Protein Names: | Histone H2A.X |
UniProt Gene Name: | H2afx |
UniProt Entry Name: | H2AX_MOUSE |
Component | Quantity (96 Assays) | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | -20°C |
Lyophilized Standard | 2 | -20°C |
Sample Diluent | 20ml | -20°C |
Assay Diluent A | 10mL | -20°C |
Assay Diluent B | 10mL | -20°C |
Detection Reagent A | 120µL | -20°C |
Detection Reagent B | 120µL | -20°C |
Wash Buffer | 30mL | 4°C |
Substrate | 10mL | 4°C |
Stop Solution | 10mL | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step | |
1. | Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C. |
2. | Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform. |
3. | Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper. |
4. | Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C. |
5. | Repeat the wash process for five times as conducted in step 3. |
6. | Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction. |
7. | Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing. |
8. | Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters. |
9. | After experiment, store all reagents according to the specified storage temperature respectively until their expiry. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |