Mouse EDA / Ectodysplasin-A ELISA Kit
- SKU:
- MOFI00514
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- O54693
- Sensitivity:
- 0.094ng/ml
- Range:
- 0.156-10ng/ml
- ELISA Type:
- Sandwich
- Synonyms:
- Eda, EDA protein homolog, Tabby protein, ED1, HED, EDA1, EDA2, HED1, ODT1, XHED, ECTD1, XLHED, ED1-A1, ED1-A2, EDA-A1, EDA-A2, STHAGX1, Ectodermal dysplasia protein
- Reactivity:
- Mouse
- Research Area:
- Developmental Biology
Description
Mouse EDA/Ectodysplasin-A ELISA Kit
The Mouse EDA (Ectodysplasin-A) ELISA Kit is specifically designed to accurately measure levels of Ectodysplasin-A in mouse serum, plasma, and cell culture supernatants. This kit boasts high sensitivity and specificity, ensuring consistent and dependable results for various research applications.Ectodysplasin-A is a vital protein involved in the development of ectodermal tissues, including skin, hair, and teeth.
Dysregulation of Ectodysplasin-A has been linked to various developmental disorders and conditions such as ectodermal dysplasia. Therefore, this ELISA kit is an essential tool for researchers studying the role of Ectodysplasin-A in development and disease, as well as potential therapeutic interventions.
Product Name: | Mouse EDA / Ectodysplasin-A ELISA Kit |
Product Code: | MOFI00514 |
Size: | 96 Assays |
Alias: | Eda, EDA protein homolog, Tabby protein, ED1, HED, EDA1, EDA2, HED1, ODT1, XHED, ECTD1, XLHED, ED1-A1, ED1-A2, EDA-A1, EDA-A2, STHAGX1, Ectodermal dysplasia protein |
Detection Method: | Sandwich ELISA |
Application: | This immunoassay kit allows for the in vitro quantitative determination of Mouse Eda concentrations in serum plasma and other biological fluids. |
Sensitivity: | 0.094ng/ml |
Range: | 0.156-10ng/ml |
Storage: | 4°C for 6 months |
Note: | For Research Use Only |
Recovery: | Matrices listed below were spiked with certain level of Mouse Eda and the recovery rates were calculated by comparing the measured value to the expected amount of Mouse Eda in samples. | ||||||||||||||||
| |||||||||||||||||
Linearity: | The linearity of the kit was assayed by testing samples spiked with appropriate concentration of Mouse Eda and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected. | ||||||||||||||||
| |||||||||||||||||
Intra Assay: | CV <8% | ||||||||||||||||
Inter Assay: | CV <10% |
Component | Quantity | Storage |
ELISA Microplate (Dismountable) | 8-12 strips | 4°C for 6 months |
Lyophilized Standard | 2 | 4°C/-20°C |
Sample/Standard Dilution Buffer | 20ml | 4°C |
Biotin-labeled Antibody(Concentrated) | 120ul | 4°C (Protect from light) |
Antibody Dilution Buffer | 10ml | 4°C |
HRP-Streptavidin Conjugate(SABC) | 120ul | 4°C (Protect from light) |
SABC Dilution Buffer | 10ml | 4°C |
TMB Substrate | 10ml | 4°C (Protect from light) |
Stop Solution | 10ml | 4°C |
Wash Buffer(25X) | 30ml | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
Uniprot | O54693 |
UniProt Protein Function: | EDA: Seems to be involved in epithelial-mesenchymal signaling during morphogenesis of ectodermal organs. Isoform 1 binds only to the receptor EDAR, while isoform 3 binds exclusively to the receptor XEDAR. Defects in EDA are the cause of ectodermal dysplasia type 1 (ED1); also known as Christ-Siemens-Touraine syndrome or X-linked hypohidrotic ectodermal dysplasia (XLHED). Ectodermal dysplasia defines a heterogeneous group of disorders due to abnormal development of two or more ectodermal structures. ED1 is a disease characterized by sparse hair (atrichosis or hypotrichosis), abnormal or missing teeth and the inability to sweat due to the absence of sweat glands. ED1 is the most common form of over 150 clinically distinct ectodermal dysplasias. Defects in EDA are the cause of tooth agenesis selective X-linked type 1 (STHAGX1). A form of selective tooth agenesis, a common anomaly characterized by the congenital absence of one or more teeth. Selective tooth agenesis without associated systemic disorders has sometimes been divided into 2 types: oligodontia, defined as agenesis of 6 or more permanent teeth, and hypodontia, defined as agenesis of less than 6 teeth. The number in both cases does not include absence of third molars (wisdom teeth). Belongs to the tumor necrosis factor family. 8 isoforms of the human protein are produced by alternative splicing. |
UniProt Protein Details: | Protein type:Membrane protein, integral; Motility/polarity/chemotaxis; Receptor, misc. Cellular Component: endoplasmic reticulum membrane; collagen; membrane; integral to plasma membrane; apical part of cell; integral to membrane; plasma membrane; extracellular region Molecular Function:tumor necrosis factor receptor binding Biological Process: skin development; positive regulation of I-kappaB kinase/NF-kappaB cascade; pigmentation; hair follicle development; cell-matrix adhesion; multicellular organismal development; immune response; positive regulation of NF-kappaB import into nucleus; gene expression; cell differentiation; odontogenesis of dentine-containing teeth |
UniProt Code: | O54693 |
NCBI GenInfo Identifier: | 295789018 |
NCBI Gene ID: | 13607 |
NCBI Accession: | NP_001171408.1 |
UniProt Secondary Accession: | O54693,O35705, Q9QWJ8, Q9QZ01, Q9QZ02, B7ZMT7, |
UniProt Related Accession: | O54693 |
Molecular Weight: | 41,603 Da |
NCBI Full Name: | ectodysplasin-A isoform 2 |
NCBI Synonym Full Names: | ectodysplasin-A |
NCBI Official Symbol: | Eda  |
NCBI Official Synonym Symbols: | Ta; Ed1; HED; EDA1; XLHED; tabby; Eda-A1; Eda-A2Â Â |
NCBI Protein Information: | ectodysplasin-A; EDA protein homolog |
UniProt Protein Name: | Ectodysplasin-A |
UniProt Synonym Protein Names: | EDA protein homolog; Tabby proteinCleaved into the following 2 chains:Ectodysplasin-A, membrane form; Ectodysplasin-A, secreted form |
Protein Family: | Ectodysplasin |
UniProt Gene Name: | Eda  |
UniProt Entry Name: | EDA_MOUSE |
*Note: Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Step | Procedure |
1. | Set standard, test sample and control (zero) wells on the pre-coated plate respectively, and then, record their positions. It is recommended to measure each standard and sample in duplicate. Wash plate 2 times before adding standard, sample and control (zero) wells! |
2. | Aliquot 0.1ml standard solutions into the standard wells. |
3. | Add 0.1 ml of Sample / Standard dilution buffer into the control (zero) well. |
4. | Add 0.1 ml of properly diluted sample (Human serum, plasma, tissue homogenates and other biological fluids.) into test sample wells. |
5. | Seal the plate with a cover and incubate at 37 °C for 90 min. |
6. | Remove the cover and discard the plate content, clap the plate on the absorbent filter papers or other absorbent material. Do NOT let the wells completely dry at any time. Wash plate X2. |
7. | Add 0.1 ml of Biotin- detection antibody working solution into the above wells (standard, test sample & zero wells). Add the solution at the bottom of each well without touching the side wall. |
8. | Seal the plate with a cover and incubate at 37°C for 60 min. |
9. | Remove the cover, and wash plate 3 times with Wash buffer. Let wash buffer rest in wells for 1 min between each wash. |
10. | Add 0.1 ml of SABC working solution into each well, cover the plate and incubate at 37°C for 30 min. |
11. | Remove the cover and wash plate 5 times with Wash buffer, and each time let the wash buffer stay in the wells for 1-2 min. |
12. | Add 90 µL of TMB substrate into each well, cover the plate and incubate at 37°C in dark within 10-20 min. (Note: This incubation time is for reference use only, the optimal time should be determined by end user.) And the shades of blue can be seen in the first 3-4 wells (with most concentrated standard solutions), the other wells show no obvious color. |
13. | Add 50 µL of Stop solution into each well and mix thoroughly. The color changes into yellow immediately. |
14. | Read the O.D. absorbance at 450 nm in a microplate reader immediately after adding the stop solution. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum: | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma: | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 - g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid: | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant: | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates: | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20°C. |
Tissue homogenates: | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates: | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk: | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |