Mouse 5'-AMP-activated protein kinase subunit beta-1 (Prkab1) ELISA Kit
The Mouse 5' AMP-activated Protein Kinase Subunit Beta 1 (PRKAB1) ELISA Kit is a powerful tool for the quantitative measurement of PRKAB1 levels in mouse serum, plasma, and cell culture supernatants. This kit offers outstanding sensitivity and specificity, ensuring accurate and reproducible results for a variety of research applications.PRKAB1 is a key regulatory subunit of AMP-activated protein kinase, a metabolic sensor that plays a critical role in energy homeostasis and cellular metabolism. Dysregulation of PRKAB1 has been implicated in various metabolic disorders, including obesity, diabetes, and cardiovascular diseases.
Detecting and quantifying PRKAB1 levels can provide valuable insights into the molecular mechanisms underlying these conditions and help identify potential therapeutic targets.With its precision and reliability, the Mouse PRKAB1 ELISA Kit is an essential tool for researchers studying metabolic pathways, energy metabolism, and related diseases in mouse models. Get accurate and insightful results with this innovative ELISA kit from Assaygenie.
Product Name:
Mouse 5'-AMP-activated protein kinase subunit beta-1 (Prkab1) ELISA Kit
SKU:
MOEB1606
Size:
96T
Target:
Mouse 5'-AMP-activated protein kinase subunit beta-1 (Prkab1)
Synonyms:
AMPK subunit beta-1
Assay Type:
Sandwich
Detection Method:
ELISA
Reactivity:
Mouse
Detection Range:
0.156-10ng/mL
Sensitivity:
0.08ng/mL
Intra CV:
Provided with the Kit
Inter CV:
Provided with the Kit
Linearity:
Provided with the Kit
Recovery:
Provided with the Kit
Function:
Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).
Uniprot:
Q9R078
Sample Type:
Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids
Specificity:
Natural and recombinant mouse 5'-AMP-activated protein kinase subunit beta-1
Sub Unit:
AMPK is a heterotrimer of an alpha catalytic subunit (PRKAA1 or PRKAA2), a beta (PRKAB1 or PRKAB2) and a gamma non-catalytic subunits (PRKAG1, PRKAG2 or PRKAG3). Interacts with FNIP1 and FNIP2.
Research Area:
Cardiovascular
Storage:
Please see kit components below for exact storage details
Note:
For research use only
UniProt Protein Function:
AMPKB1: a non-catalytic subunit of AMPK, a conserved kinase of the CAMKL family. AMPK is an energy-sensing protein that plays a key role in regulating cellular energy homeostasis. Environmental stress, such as heat shock, nutrient deprivation, hypoxia and ischemia, indirectly activate AMPK by the depletion of cellular ATP and the concomitant rise of ADP and AMP levels. Allosteric activation is achieved primarily by rising ADP levels, and not solely by AMP levels as previously thought. Activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton, probably by indirectly activating myosin. AMPK is a heterotrimer of an alpha catalytic subunit (AMPKA1 or -2), a beta (AMPKB1 or -2) and a gamma non-catalytic subunit (AMPKG1, -2 or -3). Different possible combinations of subunits give rise to 12 different holoenzymes. Beta subunits act as scaffolds on which the AMPK complex assembles, via its C-terminus that bridges alpha and gamma subunits. AMPK-beta1 or -beta2 subunits are required for assembling of AMPK heterotrimers and are important for regulating enzyme activity and cellular localization. AMPK beta1beta2 null mouse muscles reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Phosphorylation by ULK1 and ULK2 inhibits AMPK activity. Hematopoietic AMPKB1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity.Protein type: Protein kinase, regulatory subunit; AutophagyCellular Component: protein complex; nucleus; AMP-activated protein kinase complexMolecular Function: AMP-activated protein kinase activity; protein binding; protein kinase binding; protein kinase activityBiological Process: regulation of catalytic activity; protein heterooligomerization; lipid metabolic process; fatty acid metabolic process; signal transduction; regulation of protein kinase activity; protein amino acid phosphorylation; fatty acid biosynthetic process
protein kinase, AMP-activated, beta 1 non-catalytic subunit
NCBI Official Symbol:
Prkab1
NCBI Official Synonym Symbols:
AU021155; E430008F22; 1300015D22Rik
NCBI Protein Information:
5'-AMP-activated protein kinase subunit beta-1
UniProt Protein Name:
5'-AMP-activated protein kinase subunit beta-1
UniProt Synonym Protein Names:
Protein Family:
5'-AMP-activated protein kinase
UniProt Gene Name:
Prkab1
UniProt Entry Name:
AAKB1_MOUSE
Component
Quantity (96 Assays)
Storage
ELISA Microplate (Dismountable)
8×12 strips
-20°C
Lyophilized Standard
2
-20°C
Sample Diluent
20ml
-20°C
Assay Diluent A
10mL
-20°C
Assay Diluent B
10mL
-20°C
Detection Reagent A
120µL
-20°C
Detection Reagent B
120µL
-20°C
Wash Buffer
30mL
4°C
Substrate
10mL
4°C
Stop Solution
10mL
4°C
Plate Sealer
5
-
Other materials and equipment required:
Microplate reader with 450 nm wavelength filter
Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
Incubator
Deionized or distilled water
Absorbent paper
Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step
1.
Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C.
2.
Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform.
3.
Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper.
4.
Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C.
5.
Repeat the wash process for five times as conducted in step 3.
6.
Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction.
7.
Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
8.
Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters.
9.
After experiment, store all reagents according to the specified storage temperature respectively until their expiry.
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type
Protocol
Serum
If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles.
Plasma
Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit.
Urine & Cerebrospinal Fluid
Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid.
Cell culture supernatant
Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately.
Cell lysates
Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Tissue homogenates
The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C.
Tissue lysates
Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Breast Milk
Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles.