Human Somatotropin (GH1) ELISA Kit (HUEB0116)
- SKU:
- HUEB0116
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- P01241
- Range:
- 31.2-2000 pg/mL
- ELISA Type:
- Sandwich
- Synonyms:
- GH, Growth Hormone, GH1, GH-N, GHN, hGH-N, Somatotropin
- Reactivity:
- Human
Description
Human Somatotropin (GH1) ELISA Kit
The Human Somatotropin (GH1) ELISA Kit is specifically designed for the precise measurement of human somatotropin levels in serum, plasma, and cell culture supernatants. This kit offers exceptional sensitivity and specificity, ensuring that you can rely on accurate and consistent results for a variety of research purposes.Somatotropin, also known as growth hormone, plays a crucial role in regulating growth, metabolism, and various physiological processes in the body. Monitoring somatotropin levels can provide valuable insights into conditions such as growth disorders, metabolic disorders, and endocrine dysfunction.
With its high-performance capabilities, the Human Somatotropin (GH1) ELISA Kit is an indispensable tool for scientists and researchers investigating the mechanisms underlying growth and metabolism, as well as exploring potential therapeutic interventions for related conditions. Trust in this kit to deliver reliable results and advance your research efforts.
Product Name: | Human Somatotropin (GH1) ELISA Kit |
SKU: | HUEB0116 |
Size: | 96T |
Target: | Human Somatotropin (GH1) |
Synonyms: | Growth hormone, Growth hormone 1, Pituitary growth hormone, GH |
Assay Type: | Competitive |
Detection Method: | ELISA |
Reactivity: | Human |
Detection Range: | 0.39-25ng/mL |
Sensitivity: | 0.10 ng/mL |
Intra CV: | 5.3% | ||||||||||||||||||||
Inter CV: | 8.9% | ||||||||||||||||||||
Linearity: |
| ||||||||||||||||||||
Recovery: |
| ||||||||||||||||||||
Function: | Plays an important role in growth control. Its major role in stimulating body growth is to stimulate the liver and other tissues to secrete IGF-1. It stimulates both the differentiation and proliferation of myoblasts. It also stimulates amino acid uptake and protein synthesis in muscle and other tissues. |
Uniprot: | P01241 |
Sample Type: | Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids |
Specificity: | Natural and recombinant human Somatotropin |
Sub Unit: | Monomer, dimer, trimer, tetramer and pentamer, disulfide-linked or non-covalently associated, in homopolymeric and heteropolymeric combinations. Can also form a complex either with GHBP or with the alpha2-macroglobulin complex. |
Research Area: | Signal Transduction |
Subcellular Location: | Secreted |
Storage: | Please see kit components below for exact storage details |
Note: | For research use only |
UniProt Protein Function: | GH: Plays an important role in growth control. Its major role in stimulating body growth is to stimulate the liver and other tissues to secrete IGF-1. It stimulates both the differentiation and proliferation of myoblasts. It also stimulates amino acid uptake and protein synthesis in muscle and other tissues. Defects in GH1 are a cause of growth hormone deficiency isolated type 1A (IGHD1A); also known as pituitary dwarfism I. IGHD1A is an autosomal recessive deficiency of GH which causes short stature. IGHD1A patients have an absence of GH with severe dwarfism and often develop anti-GH antibodies when given exogenous GH. Defects in GH1 are a cause of growth hormone deficiency isolated type 1B (IGHD1B); also known as dwarfism of Sindh. IGHD1B is an autosomal recessive deficiency of GH which causes short stature. IGHD1B patients have low but detectable levels of GH. Dwarfism is less severe than in IGHD1A and patients usually respond well to exogenous GH. Defects in GH1 are the cause of Kowarski syndrome (KWKS); also known as pituitary dwarfism VI. Defects in GH1 are a cause of growth hormone deficiency isolated type 2 (IGHD2). IGHD2 is an autosomal dominant deficiency of GH which causes short stature. Clinical severity is variable. Patients have a positive response and immunologic tolerance to growth hormone therapy. Belongs to the somatotropin/prolactin family. 4 isoforms of the human protein are produced by alternative splicing. |
UniProt Protein Details: | Protein type:Secreted; Secreted, signal peptide; Hormone Chromosomal Location of Human Ortholog: 17q24.2 Cellular Component: extracellular space; extracellular region Molecular Function:protein binding; growth hormone receptor binding; growth factor activity; prolactin receptor binding; hormone activity; metal ion binding Biological Process: positive regulation of phosphoinositide 3-kinase cascade; positive regulation of insulin-like growth factor receptor signaling pathway; positive regulation of MAP kinase activity; positive regulation of peptidyl-tyrosine phosphorylation; positive regulation of tyrosine phosphorylation of Stat5 protein; positive regulation of receptor internalization; positive regulation of JAK-STAT cascade; glucose transport; positive regulation of multicellular organism growth; JAK-STAT cascade; response to estradiol stimulus; positive regulation of tyrosine phosphorylation of Stat3 protein Disease: Isolated Growth Hormone Deficiency, Type Ia; Isolated Growth Hormone Deficiency, Type Ib; Isolated Growth Hormone Deficiency, Type Ii; Kowarski Syndrome |
NCBI Summary: | The protein encoded by this gene is a member of the somatotropin/prolactin family of hormones which play an important role in growth control. The gene, along with four other related genes, is located at the growth hormone locus on chromosome 17 where they are interspersed in the same transcriptional orientation; an arrangement which is thought to have evolved by a series of gene duplications. The five genes share a remarkably high degree of sequence identity. Alternative splicing generates additional isoforms of each of the five growth hormones, leading to further diversity and potential for specialization. This particular family member is expressed in the pituitary but not in placental tissue as is the case for the other four genes in the growth hormone locus. Mutations in or deletions of the gene lead to growth hormone deficiency and short stature. [provided by RefSeq, Jul 2008] |
UniProt Code: | P01241 |
NCBI GenInfo Identifier: | 134703 |
NCBI Gene ID: | 2688 |
NCBI Accession: | P01241.2 |
UniProt Related Accession: | P01241 |
Molecular Weight: | 22.3 |
NCBI Full Name: | Somatotropin |
NCBI Synonym Full Names: | growth hormone 1 |
NCBI Official Symbol: | GH1 |
NCBI Official Synonym Symbols: | GH; GHN; GH-N; GHB5; IGHD2; hGH-N; IGHD1A; IGHD1B |
NCBI Protein Information: | somatotropin |
UniProt Protein Name: | Somatotropin |
UniProt Synonym Protein Names: | Growth hormone; GH; GH-N; Growth hormone 1; Pituitary growth hormone |
Protein Family: | Growth hormone |
UniProt Gene Name: | GH1 |
UniProt Entry Name: | SOMA_HUMAN |
Component | Quantity (96 Assays) | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | -20°C |
Lyophilized Standard | 2 | -20°C |
Sample Diluent | 20ml | -20°C |
Assay Diluent A | 10mL | -20°C |
Assay Diluent B | 10mL | -20°C |
Detection Reagent A | 120µL | -20°C |
Detection Reagent B | 120µL | -20°C |
Wash Buffer | 30mL | 4°C |
Substrate | 10mL | 4°C |
Stop Solution | 10mL | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step | |
1. | Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C. |
2. | Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform. |
3. | Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper. |
4. | Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C. |
5. | Repeat the wash process for five times as conducted in step 3. |
6. | Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction. |
7. | Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing. |
8. | Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters. |
9. | After experiment, store all reagents according to the specified storage temperature respectively until their expiry. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |