Human Sodium/potassium-transporting ATPase subunit alpha-3 (ATP1A3) ELISA Kit (HUEB1140)
- SKU:
- HUEB1140
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- P13637
- Range:
- 31.2-2000 pg/ml
- ELISA Type:
- Sandwich
- Reactivity:
- Human
Description
Human Sodium/potassium-transporting ATPase subunit alpha-3 (ATP1A3) ELISA Kit
The Human Sodium-Potassium Transporting ATPase Subunit Alpha 3 (ATP1A3) ELISA Kit is a specialized tool for accurate detection of ATP1A3 levels in human biological samples such as serum, plasma, and cell culture supernatants. This kit is known for its high sensitivity and specificity, ensuring precise and consistent results for various research applications.ATP1A3 is a critical enzyme responsible for maintaining electrochemical gradients across cell membranes by actively transporting sodium and potassium ions.
Dysregulation of ATP1A3 has been linked to various neurological disorders, including rapid-onset dystonia-parkinsonism and hemiplegic migraine. This ELISA kit serves as a valuable tool for studying the role of ATP1A3 in these disorders and potential therapeutic interventions.Overall, the Human Sodium-Potassium Transporting ATPase Subunit Alpha 3 (ATP1A3) ELISA Kit is a reliable solution for researchers seeking to investigate the function and significance of ATP1A3 in human health and disease.
Product Name: | Human Sodium/potassium-transporting ATPase subunit alpha-3 (ATP1A3) ELISA Kit |
SKU: | HUEB1140 |
Size: | 96T |
Target: | Human Sodium/potassium-transporting ATPase subunit alpha-3 (ATP1A3) |
Synonyms: | Na(+)/K(+) ATPase alpha(III) subunit, Sodium pump subunit alpha-3, Na(+)/K(+) ATPase alpha-3 subunit |
Assay Type: | Sandwich |
Detection Method: | ELISA |
Reactivity: | Human |
Detection Range: | 31.2-2000pg/ml |
Sensitivity: | 15.62pg/mL |
Intra CV: | 5.8% | ||||||||||||||||||||
Inter CV: | 9.9% | ||||||||||||||||||||
Linearity: |
| ||||||||||||||||||||
Recovery: |
| ||||||||||||||||||||
Function: | This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. |
Uniprot: | P13637 |
Sample Type: | Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids |
Specificity: | Natural and recombinant human Sodium/potassium-transporting ATPase subunit alpha-3 |
Sub Unit: | Composed of three subunits: alpha (catalytic), beta and gamma. |
Subcellular Location: | Cell membrane Multi-pass membrane protein |
Storage: | Please see kit components below for exact storage details |
Note: | For research use only |
UniProt Protein Function: | ATP1A3: This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Defects in ATP1A3 are the cause of dystonia type 12 (DYT12); also known as rapid-onset dystonia parkinsonism (RDP). DYT12 is an autosomal dominant dystonia- parkinsonism disorder. Dystonia is defined by the presence of sustained involuntary muscle contractions, often leading to abnormal postures. DYT12 patients develop dystonia and parkinsonism between 15 and 45 years of age. The disease is characterized by an unusually rapid evolution of signs and symptoms. The sudden onset of symptoms over hours to a few weeks, often associated with physical or emotional stress, suggests a trigger initiating a nervous system insult resulting in permanent neurologic disability. Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIC subfamily. |
UniProt Protein Details: | Protein type:Transporter; Endoplasmic reticulum; Membrane protein, multi-pass; Hydrolase; Transporter, ion channel; Membrane protein, integral; EC 3.6.3.9 Chromosomal Location of Human Ortholog: 19q13.31 Cellular Component: endoplasmic reticulum; Golgi apparatus; plasma membrane; sodium:potassium-exchanging ATPase complex; synapse Molecular Function:chaperone binding; sodium:potassium-exchanging ATPase activity Biological Process: ATP hydrolysis coupled proton transport; cellular potassium ion homeostasis; cellular sodium ion homeostasis; potassium ion import Disease: Alternating Hemiplegia Of Childhood 2; Cerebellar Ataxia, Areflexia, Pes Cavus, Optic Atrophy, And Sensorineural Hearing Loss; Dystonia 12 |
NCBI Summary: | The protein encoded by this gene belongs to the family of P-type cation transport ATPases, and to the subfamily of Na+/K+ -ATPases. Na+/K+ -ATPase is an integral membrane protein responsible for establishing and maintaining the electrochemical gradients of Na and K ions across the plasma membrane. These gradients are essential for osmoregulation, for sodium-coupled transport of a variety of organic and inorganic molecules, and for electrical excitability of nerve and muscle. This enzyme is composed of two subunits, a large catalytic subunit (alpha) and a smaller glycoprotein subunit (beta). The catalytic subunit of Na+/K+ -ATPase is encoded by multiple genes. This gene encodes an alpha 3 subunit. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jan 2012] |
UniProt Code: | P13637 |
NCBI GenInfo Identifier: | 116241260 |
NCBI Gene ID: | 478 |
NCBI Accession: | P13637.3 |
UniProt Secondary Accession: | P13637,Q16732, Q16735, Q969K5, B7Z2T0, B7Z401, F5H6J6 |
UniProt Related Accession: | P13637 |
Molecular Weight: | 113,059 Da |
NCBI Full Name: | Sodium/potassium-transporting ATPase subunit alpha-3 |
NCBI Synonym Full Names: | ATPase Na+/K+ transporting subunit alpha 3 |
NCBI Official Symbol: | ATP1A3 |
NCBI Official Synonym Symbols: | RDP; AHC2; CAPOS; DYT12; ATP1A1 |
NCBI Protein Information: | sodium/potassium-transporting ATPase subunit alpha-3 |
UniProt Protein Name: | Sodium/potassium-transporting ATPase subunit alpha-3 |
UniProt Synonym Protein Names: | Na(+)/K(+) ATPase alpha(III) subunit; Sodium pump subunit alpha-3 |
Protein Family: | Sodium/potassium-transporting ATPase |
UniProt Gene Name: | ATP1A3 |
UniProt Entry Name: | AT1A3_HUMAN |
Component | Quantity (96 Assays) | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | -20°C |
Lyophilized Standard | 2 | -20°C |
Sample Diluent | 20ml | -20°C |
Assay Diluent A | 10mL | -20°C |
Assay Diluent B | 10mL | -20°C |
Detection Reagent A | 120µL | -20°C |
Detection Reagent B | 120µL | -20°C |
Wash Buffer | 30mL | 4°C |
Substrate | 10mL | 4°C |
Stop Solution | 10mL | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step | |
1. | Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C. |
2. | Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform. |
3. | Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper. |
4. | Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C. |
5. | Repeat the wash process for five times as conducted in step 3. |
6. | Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction. |
7. | Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing. |
8. | Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters. |
9. | After experiment, store all reagents according to the specified storage temperature respectively until their expiry. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |