Human Neuropathy target esterase / PNPLA6 ELISA Kit
- SKU:
- HUFI01790
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- Q8IY17
- Sensitivity:
- 0.094ng/ml
- Range:
- 0.156-10ng/ml
- ELISA Type:
- Sandwich
- Synonyms:
- PNPLA6, NTE, Patatin-like phospholipase domain-containing protein 6
- Reactivity:
- Human
- Research Area:
- Metabolism
Description
Human Neuropathy target esterase/PNPLA6 ELISA Kit
The Human Neuropathy Target Esterase (PNPLA6) ELISA Kit is specifically designed for the precise and accurate measurement of PNPLA6 levels in human samples including serum, plasma, and cell culture supernatants. This kit offers exceptional sensitivity and specificity, ensuring dependable and consistent results for a variety of research applications.PNPLA6, also known as neuropathy target esterase, is a vital enzyme involved in lipid metabolism and neuronal function. Dysregulation of PNPLA6 has been linked to various neurodegenerative diseases such as hereditary spastic paraplegia and Boucher-Neuhäuser syndrome.
Therefore, the measurement of PNPLA6 levels can serve as a valuable biomarker for understanding these disorders and exploring potential therapeutic interventions.Overall, the Human Neuropathy Target Esterase (PNPLA6) ELISA Kit provides researchers with a powerful tool for investigating the role of PNPLA6 in health and disease, opening up new possibilities for advancing our understanding of neurodegenerative conditions and developing novel treatment strategies.
Product Name: | Human Neuropathy target esterase / PNPLA6 ELISA Kit |
Product Code: | HUFI01790 |
Size: | 96 Assays |
Alias: | PNPLA6, NTE, Patatin-like phospholipase domain-containing protein 6 |
Detection method: | Sandwich ELISA, Double Antibody |
Application: | This immunoassay kit allows for the in vitro quantitative determination of Human PNPLA6 concentrations in serum plasma and other biological fluids. |
Sensitivity: | 0.094ng/ml |
Range: | 0.156-10ng/ml |
Storage: | 4°C for 6 months |
Note: | For Research Use Only |
Recovery: | Matrices listed below were spiked with certain level of Human PNPLA6 and the recovery rates were calculated by comparing the measured value to the expected amount of Human PNPLA6 in samples. | ||||||||||||||||
| |||||||||||||||||
Linearity: | The linearity of the kit was assayed by testing samples spiked with appropriate concentration of Human PNPLA6 and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected. | ||||||||||||||||
| |||||||||||||||||
CV(%): | Intra-Assay: CV<8% Inter-Assay: CV<10% |
Component | Quantity | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | 4°C for 6 months |
Lyophilized Standard | 2 | 4°C/-20°C |
Sample/Standard Dilution Buffer | 20ml | 4°C |
Biotin-labeled Antibody(Concentrated) | 120ul | 4°C (Protect from light) |
Antibody Dilution Buffer | 10ml | 4°C |
HRP-Streptavidin Conjugate(SABC) | 120ul | 4°C (Protect from light) |
SABC Dilution Buffer | 10ml | 4°C |
TMB Substrate | 10ml | 4°C (Protect from light) |
Stop Solution | 10ml | 4°C |
Wash Buffer(25X) | 30ml | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
Uniprot | Q8IY17 |
UniProt Protein Function: | NTE: Phospholipase B that deacylates intracellular phosphatidylcholine (PtdCho), generating glycerophosphocholine (GroPtdCho). This deacylation occurs at both sn-2 and sn-1 positions of PtdCho. Its specific chemical modification by certain organophosphorus (OP) compounds leads to distal axonopathy. Defects in PNPLA6 are the cause of spastic paraplegia autosomal recessive type 39 (SPG39); also known as NTE-related motor neuron disorder (NTEMND). Spastic paraplegia is a neurodegenerative disorder characterized by a slow, gradual, progressive weakness and spasticity of the lower limbs. Rate of progression and the severity of symptoms are quite variable. Initial symptoms may include difficulty with balance, weakness and stiffness in the legs, muscle spasms, and dragging the toes when walking. In some forms of the disorder, bladder symptoms (such as incontinence) may appear, or the weakness and stiffness may spread to other parts of the body. SPG39 is associated with a motor axonopathy affecting upper and lower limbs and resulting in progressive wasting of distal upper and lower extremity muscles. Belongs to the NTE family. 3 isoforms of the human protein are produced by alternative splicing. |
UniProt Protein Details: | Protein type:Membrane protein, integral; Hydrolase; EC 3.1.1.5 Chromosomal Location of Human Ortholog: 19p13.2 Cellular Component: endoplasmic reticulum; endoplasmic reticulum membrane; membrane Molecular Function:lysophospholipase activity Biological Process: developmental process; glycerophospholipid catabolic process Disease: Boucher-neuhauser Syndrome; Laurence-moon Syndrome; Oliver-mcfarlane Syndrome; Spastic Paraplegia 39, Autosomal Recessive |
NCBI Summary: | This gene encodes a phospholipase that deacetylates intracellular phosphatidylcholine to produce glycerophosphocholine. It is thought to function in neurite outgrowth and process elongation during neuronal differentiation. The protein is anchored to the cytoplasmic face of the endoplasmic reticulum in both neurons and non-neuronal cells. Mutations in this gene result in autosomal recessive spastic paraplegia, and the protein is the target for neurodegeneration induced by organophosphorus compounds and chemical warfare agents. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2009] |
UniProt Code: | Q8IY17 |
NCBI GenInfo Identifier: | 150403921 |
NCBI Gene ID: | 10908 |
NCBI Accession: | Q8IY17.2 |
UniProt Secondary Accession: | Q8IY17,O60859, Q86W58, Q9UG58, A6NGQ0, B4DFB9, B7Z7T2 F5H5K9, J3KQS3, |
UniProt Related Accession: | Q8IY17 |
Molecular Weight: | 143,351 Da |
NCBI Full Name: | Neuropathy target esterase |
NCBI Synonym Full Names: | patatin like phospholipase domain containing 6 |
NCBI Official Symbol: | PNPLA6 |
NCBI Official Synonym Symbols: | NTE; sws; BNHS; LNMS; OMCS; SPG39; NTEMND; iPLA2delta |
NCBI Protein Information: | neuropathy target esterase |
UniProt Protein Name: | Neuropathy target esterase |
UniProt Synonym Protein Names: | Patatin-like phospholipase domain-containing protein 6 |
Protein Family: | Neuropathy target esterase |
UniProt Gene Name: | PNPLA6 |
UniProt Entry Name: | PLPL6_HUMAN |
*Note: Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Before adding to wells, equilibrate the SABC working solution and TMB substrate for at least 30 min at 37°C. When diluting samples and reagents, they must be mixed completely and evenly. It is recommended to plot a standard curve for each test.
Step | Protocol |
1. | Set standard, test sample and control (zero) wells on the pre-coated plate respectively, and then, record their positions. It is recommended to measure each standard and sample in duplicate. Wash plate 2 times before adding standard, sample and control (zero) wells! |
2. | Aliquot 0.1ml standard solutions into the standard wells. |
3. | Add 0.1 ml of Sample / Standard dilution buffer into the control (zero) well. |
4. | Add 0.1 ml of properly diluted sample ( Human serum, plasma, tissue homogenates and other biological fluids.) into test sample wells. |
5. | Seal the plate with a cover and incubate at 37 °C for 90 min. |
6. | Remove the cover and discard the plate content, clap the plate on the absorbent filter papers or other absorbent material. Do NOT let the wells completely dry at any time. Wash plate X2. |
7. | Add 0.1 ml of Biotin- detection antibody working solution into the above wells (standard, test sample & zero wells). Add the solution at the bottom of each well without touching the side wall. |
8. | Seal the plate with a cover and incubate at 37°C for 60 min. |
9. | Remove the cover, and wash plate 3 times with Wash buffer. Let wash buffer rest in wells for 1 min between each wash. |
10. | Add 0.1 ml of SABC working solution into each well, cover the plate and incubate at 37°C for 30 min. |
11. | Remove the cover and wash plate 5 times with Wash buffer, and each time let the wash buffer stay in the wells for 1-2 min. |
12. | Add 90 µl of TMB substrate into each well, cover the plate and incubate at 37°C in dark within 10-20 min. (Note: This incubation time is for reference use only, the optimal time should be determined by end user.) And the shades of blue can be seen in the first 3-4 wells (with most concentrated standard solutions), the other wells show no obvious color. |
13. | Add 50 µl of Stop solution into each well and mix thoroughly. The color changes into yellow immediately. |
14. | Read the O.D. absorbance at 450 nm in a microplate reader immediately after adding the stop solution. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |