Human Leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) ELISA Kit
The Human Leukocyte Immunoglobulin-Like Receptor Subfamily B Member 1 (LILRB1) ELISA Kit is a specialized assay designed for the precise quantification of LILRB1 levels in human biological samples including serum, plasma, and cell culture supernatants. This ELISA kit offers exceptional sensitivity and specificity, ensuring accurate and reproducible results for various research applications.LILRB1 is a key immune checkpoint receptor that plays a crucial role in regulating immune responses and maintaining immune homeostasis.
Dysregulation of LILRB1 expression has been implicated in autoimmune diseases, infectious diseases, and cancer, highlighting its significance as a potential therapeutic target and diagnostic biomarker.By utilizing the Human LILRB1 ELISA Kit, researchers can gain valuable insights into the role of LILRB1 in immune modulation and disease pathogenesis, ultimately advancing our understanding of immune-related disorders and paving the way for the development of novel treatment strategies.
Product Name:
Human Leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1) ELISA Kit
SKU:
HUEB2627
Size:
96T
Target:
Human Leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1)
Synonyms:
CD85 antigen-like family member J, Immunoglobulin-like transcript 2, Monocyte/macrophage immunoglobulin-like receptor 7, ILT-2, MIR-7, CD85j, LIR-1, ILT2, LIR1, MIR7
Assay Type:
Sandwich
Detection Method:
ELISA
Reactivity:
Human
Detection Range:
31.2-2000pg/mL
Sensitivity:
10pg/mL
Intra CV:
6.5%
Inter CV:
10.5%
Linearity:
Sample
1:2
1:4
1:8
1:16
Serum(N=5)
101-112%
100-109%
90-102%
103-112%
EDTA Plasma(N=5)
103-115%
80-93%
99-109%
83-93%
Heparin Plasma(N=5)
104-113%
105-114%
95-106%
111-120%
Recovery:
Sample Type
Average(%)
Recovery Range(%)
Serum
95
89-101
Plasma
97
91-103
Function:
Receptor for class I MHC antigens. Recognizes a broad spectrum of HLA-A, HLA-B, HLA-C and HLA-G alleles. Receptor for H301/UL18, a human cytomegalovirus class I MHC homolog. Ligand binding results in inhibitory signals and down-regulation of the immune response. Engagement of LILRB1 present on natural killer cells or T-cells by class I MHC molecules protects the target cells from lysis. Interaction with HLA-B or HLA-E leads to inhibition of the signal triggered by FCER1A and inhibits serotonin release. Inhibits FCGR1A-mediated phosphorylation of cellular proteins and mobilization of intracellular calcium ions.
Uniprot:
Q8NHL6
Sample Type:
Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids
Specificity:
Natural and recombinant human Leukocyte immunoglobulin-like receptor subfamily B member 1
Sub Unit:
Binds PTPN6 when phosphorylated. Binds FCER1A and FCGR1A. Interacts with human cytomegalovirus/HHV-5 protein UL18.
Subcellular Location:
Isoform 5 Secreted
Storage:
Please see kit components below for exact storage details
Note:
For research use only
UniProt Protein Function:
Receptor for class I MHC antigens. Recognizes a broad spectrum of HLA-A, HLA-B, HLA-C and HLA-G alleles. Receptor for H301/UL18, a human cytomegalovirus class I MHC homolog. Ligand binding results in inhibitory signals and down-regulation of the immune response. Engagement of LILRB1 present on natural killer cells or T-cells by class I MHC molecules protects the target cells from lysis. Interaction with HLA-B or HLA-E leads to inhibition of the signal triggered by FCER1A and inhibits serotonin release. Inhibits FCGR1A-mediated phosphorylation of cellular proteins and mobilization of intracellular calcium ions.
NCBI Summary:
This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. It is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
leukocyte immunoglobulin-like receptor subfamily B member 1
UniProt Protein Name:
Leukocyte immunoglobulin-like receptor subfamily B member 1
UniProt Synonym Protein Names:
CD85 antigen-like family member J; Immunoglobulin-like transcript 2; ILT-2; Monocyte/macrophage immunoglobulin-like receptor 7; MIR-7; CD_antigen: CD85j
Protein Family:
Leukocyte immunoglobulin-like receptor subfamily
UniProt Gene Name:
LILRB1
UniProt Entry Name:
LIRB1_HUMAN
Component
Quantity (96 Assays)
Storage
ELISA Microplate (Dismountable)
8×12 strips
-20°C
Lyophilized Standard
2
-20°C
Sample Diluent
20ml
-20°C
Assay Diluent A
10mL
-20°C
Assay Diluent B
10mL
-20°C
Detection Reagent A
120µL
-20°C
Detection Reagent B
120µL
-20°C
Wash Buffer
30mL
4°C
Substrate
10mL
4°C
Stop Solution
10mL
4°C
Plate Sealer
5
-
Other materials and equipment required:
Microplate reader with 450 nm wavelength filter
Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
Incubator
Deionized or distilled water
Absorbent paper
Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step
1.
Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C.
2.
Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform.
3.
Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper.
4.
Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C.
5.
Repeat the wash process for five times as conducted in step 3.
6.
Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction.
7.
Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
8.
Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters.
9.
After experiment, store all reagents according to the specified storage temperature respectively until their expiry.
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type
Protocol
Serum
If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles.
Plasma
Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit.
Urine & Cerebrospinal Fluid
Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid.
Cell culture supernatant
Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately.
Cell lysates
Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Tissue homogenates
The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C.
Tissue lysates
Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Breast Milk
Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles.