Human Growth Hormone / GH ELISA Kit (HUFI00137)
- SKU:
- HUFI00137
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- P01241
- Sensitivity:
- 4.688pg/ml
- Range:
- 7.813-500pg/ml
- ELISA Type:
- Sandwich
- Synonyms:
- GH, Growth Hormone, GH1, GH-N, GHN, hGH-N, Somatotropin
- Reactivity:
- Human
Description
Human Growth Hormone/GH ELISA Kit
The Human Growth Hormone (GH) ELISA Kit is a cutting-edge tool for measuring levels of growth hormone in human serum, plasma, and cell culture supernatants. With unparalleled sensitivity and specificity, this kit produces accurate and consistent results, making it indispensable for a variety of research endeavors.Growth hormone is a pivotal hormone that regulates growth, metabolism, and cell repair in the human body. It plays a crucial role in various physiological processes, making it a key focus in the study of growth disorders, metabolic conditions, and aging-related diseases.
With the Human Growth Hormone ELISA Kit, researchers can gain valuable insights into the role of growth hormone in health and disease, paving the way for advancements in diagnostic and therapeutic strategies. Trust in this kit for precise and reliable measurements of growth hormone levels, and unlock new possibilities in your research.
Product Name: | Human Growth Hormone / GH ELISA Kit |
Product Code: | HUFI00137 |
Size: | 96 Assays |
Alias: | GH, Growth Hormone, GH1, GH-N, GHN, hGH-N, Somatotropin |
Detection method: | Sandwich ELISA, Double Antibody |
Application: | This immunoassay kit allows for the in vitro quantitative determination of Human GH concentrations in serum plasma and other biological fluids. |
Sensitivity: | 4.688pg/ml |
Range: | 7.813-500pg/ml |
Storage: | 4°C for 6 months |
Note: | For Research Use Only |
Recovery: | Matrices listed below were spiked with certain level of Human GH and the recovery rates were calculated by comparing the measured value to the expected amount of Human GH in samples. | ||||||||||||||||
| |||||||||||||||||
Linearity: | The linearity of the kit was assayed by testing samples spiked with appropriate concentration of Human GH and their serial dilutions. The results were demonstrated by the percentage of calculated concentration to the expected. | ||||||||||||||||
| |||||||||||||||||
CV(%): | Intra-Assay: CV<8% Inter-Assay: CV<10% |
Component | Quantity | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | 4°C for 6 months |
Lyophilized Standard | 2 | 4°C/-20°C |
Sample/Standard Dilution Buffer | 20ml | 4°C |
Biotin-labeled Antibody(Concentrated) | 120ul | 4°C (Protect from light) |
Antibody Dilution Buffer | 10ml | 4°C |
HRP-Streptavidin Conjugate(SABC) | 120ul | 4°C (Protect from light) |
SABC Dilution Buffer | 10ml | 4°C |
TMB Substrate | 10ml | 4°C (Protect from light) |
Stop Solution | 10ml | 4°C |
Wash Buffer(25X) | 30ml | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
Uniprot | P01241 |
UniProt Protein Function: | GH: Plays an important role in growth control. Its major role in stimulating body growth is to stimulate the liver and other tissues to secrete IGF-1. It stimulates both the differentiation and proliferation of myoblasts. It also stimulates amino acid uptake and protein synthesis in muscle and other tissues. Defects in GH1 are a cause of growth hormone deficiency isolated type 1A (IGHD1A); also known as pituitary dwarfism I. IGHD1A is an autosomal recessive deficiency of GH which causes short stature. IGHD1A patients have an absence of GH with severe dwarfism and often develop anti-GH antibodies when given exogenous GH. Defects in GH1 are a cause of growth hormone deficiency isolated type 1B (IGHD1B); also known as dwarfism of Sindh. IGHD1B is an autosomal recessive deficiency of GH which causes short stature. IGHD1B patients have low but detectable levels of GH. Dwarfism is less severe than in IGHD1A and patients usually respond well to exogenous GH. Defects in GH1 are the cause of Kowarski syndrome (KWKS); also known as pituitary dwarfism VI. Defects in GH1 are a cause of growth hormone deficiency isolated type 2 (IGHD2). IGHD2 is an autosomal dominant deficiency of GH which causes short stature. Clinical severity is variable. Patients have a positive response and immunologic tolerance to growth hormone therapy. Belongs to the somatotropin/prolactin family. 4 isoforms of the human protein are produced by alternative splicing. |
UniProt Protein Details: | Protein type:Secreted; Secreted, signal peptide; Hormone Chromosomal Location of Human Ortholog: 17q24.2 Cellular Component: extracellular space; extracellular region Molecular Function:protein binding; growth hormone receptor binding; growth factor activity; prolactin receptor binding; hormone activity; metal ion binding Biological Process: positive regulation of phosphoinositide 3-kinase cascade; positive regulation of insulin-like growth factor receptor signaling pathway; positive regulation of MAP kinase activity; positive regulation of peptidyl-tyrosine phosphorylation; positive regulation of tyrosine phosphorylation of Stat5 protein; positive regulation of receptor internalization; positive regulation of JAK-STAT cascade; glucose transport; positive regulation of multicellular organism growth; JAK-STAT cascade; response to estradiol stimulus; positive regulation of tyrosine phosphorylation of Stat3 protein Disease: Isolated Growth Hormone Deficiency, Type Ia; Isolated Growth Hormone Deficiency, Type Ib; Isolated Growth Hormone Deficiency, Type Ii; Kowarski Syndrome |
NCBI Summary: | The protein encoded by this gene is a member of the somatotropin/prolactin family of hormones which play an important role in growth control. The gene, along with four other related genes, is located at the growth hormone locus on chromosome 17 where they are interspersed in the same transcriptional orientation; an arrangement which is thought to have evolved by a series of gene duplications. The five genes share a remarkably high degree of sequence identity. Alternative splicing generates additional isoforms of each of the five growth hormones, leading to further diversity and potential for specialization. This particular family member is expressed in the pituitary but not in placental tissue as is the case for the other four genes in the growth hormone locus. Mutations in or deletions of the gene lead to growth hormone deficiency and short stature. [provided by RefSeq, Jul 2008] |
UniProt Code: | P01241 |
NCBI GenInfo Identifier: | 134703 |
NCBI Gene ID: | 2688 |
NCBI Accession: | P01241.2 |
UniProt Related Accession: | P01241 |
Molecular Weight: | 22.3 |
NCBI Full Name: | Somatotropin |
NCBI Synonym Full Names: | growth hormone 1 |
NCBI Official Symbol: | GH1Â Â |
NCBI Official Synonym Symbols: | GH; GHN; GH-N; GHB5; IGHD2; hGH-N; IGHD1A; IGHD1BÂ Â |
NCBI Protein Information: | somatotropin |
UniProt Protein Name: | Somatotropin |
UniProt Synonym Protein Names: | Growth hormone; GH; GH-N; Growth hormone 1; Pituitary growth hormone |
Protein Family: | Growth hormone |
UniProt Gene Name: | GH1Â Â |
UniProt Entry Name: | SOMA_HUMAN |
*Note: Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Before adding to wells, equilibrate the SABC working solution and TMB substrate for at least 30 min at 37°C. When diluting samples and reagents, they must be mixed completely and evenly. It is recommended to plot a standard curve for each test.
Step | Protocol |
1. | Set standard, test sample and control (zero) wells on the pre-coated plate respectively, and then, record their positions. It is recommended to measure each standard and sample in duplicate. Wash plate 2 times before adding standard, sample and control (zero) wells! |
2. | Aliquot 0.1ml standard solutions into the standard wells. |
3. | Add 0.1 ml of Sample / Standard dilution buffer into the control (zero) well. |
4. | Add 0.1 ml of properly diluted sample ( Human serum, plasma, tissue homogenates and other biological fluids.) into test sample wells. |
5. | Seal the plate with a cover and incubate at 37 °C for 90 min. |
6. | Remove the cover and discard the plate content, clap the plate on the absorbent filter papers or other absorbent material. Do NOT let the wells completely dry at any time. Wash plate X2. |
7. | Add 0.1 ml of Biotin- detection antibody working solution into the above wells (standard, test sample & zero wells). Add the solution at the bottom of each well without touching the side wall. |
8. | Seal the plate with a cover and incubate at 37°C for 60 min. |
9. | Remove the cover, and wash plate 3 times with Wash buffer. Let wash buffer rest in wells for 1 min between each wash. |
10. | Add 0.1 ml of SABC working solution into each well, cover the plate and incubate at 37°C for 30 min. |
11. | Remove the cover and wash plate 5 times with Wash buffer, and each time let the wash buffer stay in the wells for 1-2 min. |
12. | Add 90 µl of TMB substrate into each well, cover the plate and incubate at 37°C in dark within 10-20 min. (Note: This incubation time is for reference use only, the optimal time should be determined by end user.) And the shades of blue can be seen in the first 3-4 wells (with most concentrated standard solutions), the other wells show no obvious color. |
13. | Add 50 µl of Stop solution into each well and mix thoroughly. The color changes into yellow immediately. |
14. | Read the O.D. absorbance at 450 nm in a microplate reader immediately after adding the stop solution. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |