Human DNA mismatch repair protein Msh2 (MSH2) ELISA Kit (HUEB2550)
- SKU:
- HUEB2550
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- P43246
- Range:
- 78-5000 pg/mL
- ELISA Type:
- Sandwich
- Synonyms:
- MSH2, MSH2, COCA1
- Reactivity:
- Human
Description
Human DNA mismatch repair protein Msh2 (MSH2) ELISA Kit
The Human DNA Mismatch Repair Protein MSH2 ELISA Kit is specifically designed for the precise measurement of MSH2 protein levels in human samples such as serum, plasma, and cell culture supernatants. With its superior sensitivity and specificity, this kit delivers accurate and reproducible results, making it an excellent tool for a variety of research purposes.MSH2 is a critical component of the DNA mismatch repair pathway, playing a key role in maintaining genome stability and preventing mutations.
Mutations in MSH2 have been linked to hereditary nonpolyposis colorectal cancer (HNPCC) and Lynch syndrome, highlighting its significance as a potential biomarker for cancer research and diagnostics. By accurately measuring MSH2 levels, researchers can gain valuable insights into DNA repair mechanisms and their implications for various diseases.
Product Name: | Human DNA mismatch repair protein Msh2 (MSH2) ELISA Kit |
SKU: | HUEB2550 |
Size: | 96T |
Target: | Human DNA mismatch repair protein Msh2 (MSH2) |
Synonyms: | MutS protein homolog 2, hMSH2 |
Assay Type: | Sandwich |
Detection Method: | ELISA |
Reactivity: | Human |
Detection Range: | 78-5000pg/mL |
Sensitivity: | 32pg/mL |
Intra CV: | 4.5% | ||||||||||||||||||||
Inter CV: | 7.9% | ||||||||||||||||||||
Linearity: |
| ||||||||||||||||||||
Recovery: |
| ||||||||||||||||||||
Function: | Component of the post-replicative DNA mismatch repair system (MMR). Forms two different heterodimers: MutS alpha (MSH2-MSH6 heterodimer) and MutS beta (MSH2-MSH3 heterodimer) which binds to DNA mismatches thereby initiating DNA repair. When bound, heterodimers bend the DNA helix and shields approximately 20 base pairs. MutS alpha recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. MutS beta recognizes larger insertion-deletion loops up to 13 nucleotides long. After mismatch binding, MutS alpha or beta forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. In melanocytes may modulate both UV-B-induced cell cycle regulation and apoptosis. |
Uniprot: | P43246 |
Sample Type: | Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids |
Specificity: | Natural and recombinant human DNA mismatch repair protein Msh2 |
Sub Unit: | Heterodimer consisting of MSH2-MSH6 (MutS alpha) or MSH2-MSH3 (MutS beta). Both heterodimer form a ternary complex with MutL alpha (MLH1-PMS1). Interacts with EXO1. Part of the BRCA1-associated genome surveillance complex (BASC), which contains BRCA1, MSH2, MSH6, MLH1, ATM, BLM, PMS2 and the RAD50-MRE11-NBS1 protein complex. This association could be a dynamic process changing throughout the cell cycle and within subnuclear domains. Interacts with ATR. Interacts with SLX4/BTBD12; this interaction is direct and links MutS beta to SLX4, a subunit of different structure-specific endonucleases. Interacts with SMARCAD1. |
Research Area: | Cancer |
Subcellular Location: | Nucleus |
Storage: | Please see kit components below for exact storage details |
Note: | For research use only |
UniProt Protein Function: | MSH2: Component of the post-replicative DNA mismatch repair system (MMR). Forms two different heterodimers: MutS alpha (MSH2- MSH6 heterodimer) and MutS beta (MSH2-MSH3 heterodimer) which binds to DNA mismatches thereby initiating DNA repair. When bound, heterodimers bend the DNA helix and shields approximately 20 base pairs. MutS alpha recognizes single base mismatches and dinucleotide insertion-deletion loops (IDL) in the DNA. MutS beta recognizes larger insertion-deletion loops up to 13 nucleotides long. After mismatch binding, MutS alpha or beta forms a ternary complex with the MutL alpha heterodimer, which is thought to be responsible for directing the downstream MMR events, including strand discrimination, excision, and resynthesis. ATP binding and hydrolysis play a pivotal role in mismatch repair functions. The ATPase activity associated with MutS alpha regulates binding similar to a molecular switch: mismatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts MutS alpha into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. This transition is crucial for mismatch repair. MutS alpha may also play a role in DNA homologous recombination repair. In melanocytes may modulate both UV-B-induced cell cycle regulation and apoptosis. Heterodimer consisting of MSH2-MSH6 (MutS alpha) or MSH2- MSH3 (MutS beta). Both heterodimer form a ternary complex with MutL alpha (MLH1-PMS1). Interacts with EXO1. Part of the BRCA1- associated genome surveillance complex (BASC), which contains BRCA1, MSH2, MSH6, MLH1, ATM, BLM, PMS2 and the RAD50-MRE11-NBS1 protein complex. This association could be a dynamic process changing throughout the cell cycle and within subnuclear domains. Interacts with ATR. Interacts with SLX4/BTBD12; this interaction is direct and links MutS beta to SLX4, a subunit of different structure-specific endonucleases. Interacts with SMARCAD1. Ubiquitously expressed. Belongs to the DNA mismatch repair MutS family. |
UniProt Protein Details: | Protein type:Tumor suppressor; DNA-binding Chromosomal Location of Human Ortholog: 2p21 Cellular Component: membrane; MutSalpha complex; MutSbeta complex; nuclear chromosome, telomeric region; nucleoplasm Molecular Function:ADP binding; ATP binding; ATPase activity; centromeric DNA binding; dinucleotide insertion or deletion binding; dinucleotide repeat insertion binding; DNA binding; double-strand/single-strand DNA junction binding; double-stranded DNA binding; enzyme binding; four-way junction DNA binding; guanine/thymine mispair binding; loop DNA binding; magnesium ion binding; mismatched DNA binding; MutLalpha complex binding; oxidized purine DNA binding; protein binding; protein C-terminus binding; protein homodimerization activity; protein kinase binding; single guanine insertion binding; single thymine insertion binding; single-stranded DNA binding; Y-form DNA binding Biological Process: B cell differentiation; B cell mediated immunity; cell cycle arrest; determination of adult life span; DNA damage response, signal transduction by p53 class mediator resulting in induction of apoptosis; DNA repair; double-strand break repair; germ cell development; in utero embryonic development; intra-S DNA damage checkpoint; isotype switching; maintenance of DNA repeat elements; male gonad development; meiotic gene conversion; mismatch repair; negative regulation of DNA recombination; negative regulation of meiotic recombination; negative regulation of neuron apoptosis; oxidative phosphorylation; positive regulation of helicase activity; postreplication repair; response to UV-B; response to X-ray; somatic hypermutation of immunoglobulin genes; somatic recombination of immunoglobulin gene segments Disease: Lynch Syndrome I; Mismatch Repair Cancer Syndrome; Muir-torre Syndrome |
NCBI Summary: | This locus is frequently mutated in hereditary nonpolyposis colon cancer (HNPCC). When cloned, it was discovered to be a human homolog of the E. coli mismatch repair gene mutS, consistent with the characteristic alterations in microsatellite sequences (RER+ phenotype) found in HNPCC. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Apr 2012] |
UniProt Code: | P43246 |
NCBI GenInfo Identifier: | 1171032 |
NCBI Gene ID: | 4436 |
NCBI Accession: | P43246.1 |
UniProt Secondary Accession: | P43246,O75488, B4E2Z2, |
UniProt Related Accession: | P43246 |
Molecular Weight: | 97,323 Da |
NCBI Full Name: | DNA mismatch repair protein Msh2 |
NCBI Synonym Full Names: | mutS homolog 2 |
NCBI Official Symbol: | MSH2 |
NCBI Official Synonym Symbols: | FCC1; COCA1; HNPCC; LCFS2; HNPCC1 |
NCBI Protein Information: | DNA mismatch repair protein Msh2 |
UniProt Protein Name: | DNA mismatch repair protein Msh2 |
UniProt Synonym Protein Names: | MutS protein homolog 2 |
Protein Family: | DNA mismatch repair protein |
UniProt Gene Name: | MSH2 |
UniProt Entry Name: | MSH2_HUMAN |
Component | Quantity (96 Assays) | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | -20°C |
Lyophilized Standard | 2 | -20°C |
Sample Diluent | 20ml | -20°C |
Assay Diluent A | 10mL | -20°C |
Assay Diluent B | 10mL | -20°C |
Detection Reagent A | 120µL | -20°C |
Detection Reagent B | 120µL | -20°C |
Wash Buffer | 30mL | 4°C |
Substrate | 10mL | 4°C |
Stop Solution | 10mL | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step | |
1. | Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C. |
2. | Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform. |
3. | Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper. |
4. | Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C. |
5. | Repeat the wash process for five times as conducted in step 3. |
6. | Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction. |
7. | Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing. |
8. | Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters. |
9. | After experiment, store all reagents according to the specified storage temperature respectively until their expiry. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |
ELISA |
Human MSH2 ELISA Kit |