Human AP-1 complex subunit mu-1 (AP1M1) ELISA Kit (HUEB1288)
- SKU:
- HUEB1288
- Product Type:
- ELISA Kit
- Size:
- 96 Assays
- Uniprot:
- Q9BXS5
- Range:
- 0.312-20 ng/mL
- ELISA Type:
- Sandwich
- Synonyms:
- AP1M1, AP-1 complex subunit mu-1, Clathrin coat-associated protein AP47
- Reactivity:
- Human
Description
Human AP-1 complex subunit mu-1 (AP1M1) ELISA Kit
The Human AP-1 Complex Subunit Mu 1 (AP1M1) ELISA Kit is a powerful tool for the precise quantification of AP1M1 levels in human samples such as serum, plasma, and cell culture supernatants. With exceptional sensitivity and specificity, this kit delivers consistent and accurate results, making it an invaluable asset for a diverse array of research endeavors.AP1M1 is a key component of the AP-1 complex, essential for intracellular protein trafficking and vesicle formation.
Dysregulation of AP1M1 has been implicated in various diseases, including cancer, infectious diseases, and neurodegenerative disorders, underscoring its significance as a potential therapeutic target and diagnostic biomarker.Explore the intricate world of intracellular transport dynamics and unravel the mysteries of disease pathogenesis with the Human AP-1 Complex Subunit Mu 1 (AP1M1) ELISA Kit.
Product Name: | Human AP-1 complex subunit mu-1 (AP1M1) ELISA Kit |
SKU: | HUEB1288 |
Size: | 96T |
Target: | Human AP-1 complex subunit mu-1 (AP1M1) |
Synonyms: | AP-mu chain family member mu1A, Adaptor protein complex AP-1 subunit mu-1, Adaptor-related protein complex 1 subunit mu-1, Clathrin assembly protein complex 1 mu-1 medium chain 1, Clathrin coat assembly protein AP47, Clathrin coat-associated protein AP47, Golgi adaptor HA1/AP1 adaptin mu-1 subunit, Mu-adaptin 1, Mu1A-adaptin, CLTNM |
Assay Type: | Competitive |
Detection Method: | ELISA |
Reactivity: | Human |
Detection Range: | 0.312-20ng/mL |
Sensitivity: | 0.12ng/ml |
Intra CV: | 4.3% | ||||||||||||||||||||
Inter CV: | 8.1% | ||||||||||||||||||||
Linearity: |
| ||||||||||||||||||||
Recovery: |
| ||||||||||||||||||||
Function: | Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the trans-Golgi network (TGN) and endosomes. The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. |
Uniprot: | Q9BXS5 |
Sample Type: | Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids |
Specificity: | Natural and recombinant human AP-1 complex subunit mu-1 |
Sub Unit: | Adaptor protein complex 1 (AP-1) is a heterotetramer composed of two large adaptins (gamma-type subunit AP1G1 and beta-type subunit AP1B1), a medium adaptin (mu-type subunit AP1M1 or AP1M2) and a small adaptin (sigma-type subunit AP1S1 or AP1S2 or AP1S3). Interacts with MARCH11 (By similarity). Interacts with HIV-1 Nef. Associates with the AP1(MU)-Nef-MHC-I complex; this complex is required for MHC-I internalization. |
Subcellular Location: | Golgi apparatus Cytoplasmic vesicle Clathrin-coated vesicle membrane Peripheral membrane protein Cytoplasmic side Component of the coat surrounding the cytoplasmic face of coated vesicles located at the Golgi complex. |
Storage: | Please see kit components below for exact storage details |
Note: | For research use only |
UniProt Protein Function: | AP1M1: Subunit of clathrin-associated adaptor protein complex 1 that plays a role in protein sorting in the trans-Golgi network (TGN) and endosomes. The AP complexes mediate the recruitment of clathrin to membranes and the recognition of sorting signals within the cytosolic tails of transmembrane cargo molecules. Belongs to the adaptor complexes medium subunit family. 2 isoforms of the human protein are produced by alternative splicing. |
UniProt Protein Details: | Protein type:Vesicle Chromosomal Location of Human Ortholog: 19p13.12 Cellular Component: cytoplasmic vesicle membrane; cytosol; Golgi membrane; lysosomal membrane; membrane; trans-Golgi network membrane Molecular Function:protein binding Biological Process: antigen processing and presentation of exogenous peptide antigen via MHC class II; melanosome organization and biogenesis; regulation of defense response to virus by virus |
NCBI Summary: | The protein encoded by this gene is the medium chain of the trans-Golgi network clathrin-associated protein complex AP-1. The other components of this complex are beta-prime-adaptin, gamma-adaptin, and the small chain AP1S1. This complex is located at the Golgi vesicle and links clathrin to receptors in coated vesicles. These vesicles are involved in endocytosis and Golgi processing. Alternatively spliced transcript variants encoding distinct protein isoforms have been found for this gene. [provided by RefSeq, Jul 2008] |
UniProt Code: | Q9BXS5 |
NCBI GenInfo Identifier: | 18202738 |
NCBI Gene ID: | 8907 |
NCBI Accession: | Q9BXS5.3 |
UniProt Secondary Accession: | Q9BXS5,Q4TTY5, |
UniProt Related Accession: | Q9BXS5 |
Molecular Weight: | 49,840 Da |
NCBI Full Name: | AP-1 complex subunit mu-1 |
NCBI Synonym Full Names: | adaptor related protein complex 1 mu 1 subunit |
NCBI Official Symbol: | AP1M1 |
NCBI Official Synonym Symbols: | AP47; CLTNM; MU-1A; CLAPM2 |
NCBI Protein Information: | AP-1 complex subunit mu-1 |
UniProt Protein Name: | AP-1 complex subunit mu-1 |
UniProt Synonym Protein Names: | AP-mu chain family member mu1A; Adaptor protein complex AP-1 subunit mu-1; Adaptor-related protein complex 1 subunit mu-1; Clathrin assembly protein complex 1 mu-1 medium chain 1; Clathrin coat assembly protein AP47; Clathrin coat-associated protein AP47; Golgi adaptor HA1/AP1 adaptin mu-1 subunit; Mu-adaptin 1; Mu1A-adaptin |
Protein Family: | AP-1 complex |
UniProt Gene Name: | AP1M1 |
UniProt Entry Name: | AP1M1_HUMAN |
Component | Quantity (96 Assays) | Storage |
ELISA Microplate (Dismountable) | 8×12 strips | -20°C |
Lyophilized Standard | 2 | -20°C |
Sample Diluent | 20ml | -20°C |
Assay Diluent A | 10mL | -20°C |
Assay Diluent B | 10mL | -20°C |
Detection Reagent A | 120µL | -20°C |
Detection Reagent B | 120µL | -20°C |
Wash Buffer | 30mL | 4°C |
Substrate | 10mL | 4°C |
Stop Solution | 10mL | 4°C |
Plate Sealer | 5 | - |
Other materials and equipment required:
- Microplate reader with 450 nm wavelength filter
- Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
- Incubator
- Deionized or distilled water
- Absorbent paper
- Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step | |
1. | Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C. |
2. | Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform. |
3. | Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper. |
4. | Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C. |
5. | Repeat the wash process for five times as conducted in step 3. |
6. | Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction. |
7. | Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing. |
8. | Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters. |
9. | After experiment, store all reagents according to the specified storage temperature respectively until their expiry. |
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type | Protocol |
Serum | If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. |
Plasma | Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit. |
Urine & Cerebrospinal Fluid | Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid. |
Cell culture supernatant | Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately. |
Cell lysates | Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Tissue homogenates | The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C. |
Tissue lysates | Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C. |
Breast Milk | Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles. |