

Technical Manual

FluoroDazzle NAD/NADH Ratio Assay Kit

Catalogue Code: BA0106

Pack Size: 100 assays

Research Use Only

DESCRIPTION

Pyridine nucleotides play an important role in metabolism and, thus, there is continual interest in monitoring their concentration levels. Quantitative determination of NAD $^+$ /NADH has applications in research pertaining to energy transformation and redox state of cells or tissue. The Assay Genie FluoroDazzle NAD/NADH Ratio Assay Kit is based on a lactate dehydrogenase cycling reaction, in which the formed NADH reduces a probe into a highly fluorescent product. The fluorescence intensity of this product, measured at $\lambda_{\text{ex/em}} = 530/585$ nm, is proportional to the NAD $^+$ /NADH concentration in the sample. This assay is highly specific for NAD $^+$ /NADH with minimal interference (<1%) by NADP $^+$ /NADPH and is a convenient method to measure NAD, NADH and their ratio.

APPLICATIONS

Direct Assays: NAD⁺/NADH concentrations and ratios in cell or tissue extracts.

KEY FEATURES

Sensitive and accurate. Detection limit of 0.02 μM and linearity up to 1 μM NAD+/NADH in 96-well plate assay.

Convenient. The procedure involves adding a single working reagent, and reading the fluorescence at time zero and 10 min.

High-throughput. Can be readily automated as a high-throughput 96-well plate assay for thousands of samples per day.

KIT CONTENTS

NAD/NADH Extraction Buffers: each 12 mL

Storage conditions. The kit is shipped on ice. Store all reagents at -20°C. Shelf life: 6 months after receipt.

Precautions: reagents are for research use only. Normal precautions for laboratory reagents should be exercised while using the reagents. Please refer to Material Safety Data Sheet for detailed information.

GENERAL CONSIDERATIONS

- 1. At these concentrations, the standard curves for NAD and NADH are identical. Since NADH in solution is unstable, we provide only NAD as the standard.
- 2. This assay is based on an enzyme-catalyzed kinetic reaction. Addition of Working Reagent should be quick and mixing should be brief but thorough. Use of multi-channel pipettor is recommended.
- 3. The following substances interfere and should be avoided in sample preparation. EDTA (>0.5 mM), ascorbic acid, SDS (>0.2%), sodium azide, NP-40 (>1%) and Tween-20 (>1%).
- 4. For samples containing higher than 100 µM pyruvate, we recommend using an internal standard.

PROCEDURES

1. Sample Preparation. For tissues weigh ~20 mg tissue for each sample, wash with cold PBS. For cell samples, wash cells with cold PBS and pellet ~ 10^5 cells for each sample. Homogenize samples (either tissue or cells) in a 1.5 mL Eppendorf tube with either 100 μ L NAD extraction buffer for NAD determination or 100 μ L NADH extraction buffer for NADH determination. Heat extracts at 60°C for 5 min and then add 20 μ L Assay Buffer and 100 μ L of the opposite extraction buffer to neutralize the extracts. Briefly vortex and spin the samples down at 14,000 rpm for 5 min. Use supernatant

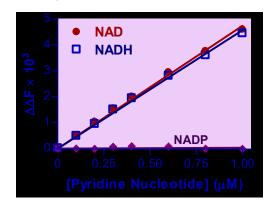
for NAD/NADH assays. Determination of both NAD and NADH concentrations requires extractions from two separate samples.

2. Calibration Curve. Prepare 500 μ L 1 2M NAD Premix by mixing 5 μ L 1 mM Standard and 4995 μ L distilled water. Dilute standard as follows

No	Premix + H₂O	NAD (2M)
1	100 µL + 0 µL	1.0
2	60 µL + 40 µL	0.6
3	30 µL + 70 µL	0.3
4	0 μL + 100 μL	0

Transfer 50 µL standards into wells of a black flat-bottom 96-well plate.

- 3. Samples. Add 50 µL of each sample in separate wells.
- 4. Reagent Preparation. For each reaction well, prepare Working Reagent by mixing 40 μ L Assay Buffer, 1 μ L Enzyme A, 1 μ L Enzyme B, 10 μ L Lactate and 5 μ L Probe. Fresh reconstitution is recommended.
- 5. Reaction. Add 50 μL Working Reagent per well quickly. Tap plate to mix.
- 6. Read fluorescence at $\lambda_{\text{ex/em}}$ = 530/585 nm for time "zero" (F₀) and F₁₀ after a 10-min incubation at room temperature. Protect plate from light during this incubation.


CALCULATION

First compute the ΔF for each standard and sample by subtracting F_0 from F_{10} . Plot the standard ΔF 's and determine the slope. The NAD(H) concentration of the sample is computed as follows:

$$[NAD(H)] = \frac{\Delta F_{SAMPLE} - \Delta F_{BLANK}}{Slope (\mu M^{-1})} \times n \quad (\mu M)$$

where ΔF_{SAMPLE} and ΔF_{BLANK} are the change in fluorescence intensity values of the Sample and Blank (STD 4) respectively. Slope is the slope of the standard curve and n is the dilution factor (if necessary).

Note: If the sample ΔF values are higher than the ΔF value for the 1 μM standard, dilute sample in distilled water and repeat this assay. Multiply the results by the dilution factor.

MATERIALS REQUIRED, BUT NOT PROVIDED

Pipetting (multi-channel) devices. Black, flat bottom 96-well plates and fluorescent plate reader capable of reading at $\mathbb{Q}_{\text{ex/em}}$ = 530/585 nm.

LITERATURE

- 1. Zhao, Z, Hu, X and Ross, CW (1987). Comparison of Tissue Preparation Methods for Assay of Nicotinamide Coenzymes. Plant Physiol. 84: 987-988.
- 2. Matsumura, H. and Miyachi, S (1980). Cycling assay for nicotinamide adenine dinucleotides. Methods Enzymol. 69: 465-470
- 3. Vilcheze, C et al. (2005). Altered NADH/NAD⁺ Ratio Mediates Coresistance to Isoniazid and Ethionamide in Mycobacteria. Antimicrobial Agents and Chemotherapy. 49(2): 708-720.

Contact Details

Dublin, Ireland

Email: info@assaygenie.com

Web: www.assaygenie.com

Technical Support: <u>Techsupport@assaygenie.com</u>

Copyright © 2017 ReagentBio, All Rights Reserved. All information / detail is correct at time of going to print.

Learn more at AssayGenie.com