The Bovine Dysbindin (DTNBP1) ELISA Kit is a powerful tool for the precise measurement of dysbindin levels in bovine samples including serum, plasma, and tissue culture supernatants. This kit boasts exceptional sensitivity and specificity, ensuring accurate and consistent results for a variety of research purposes.Dysbindin, also known as DTNBP1, plays a key role in neuronal development and neurotransmission, making it a valuable target for studying neurodevelopmental disorders such as schizophrenia and bipolar disorder.
By measuring dysbindin levels, researchers can gain insights into the mechanisms underlying these conditions and potentially identify new therapeutic strategies.The Bovine Dysbindin (DTNBP1) ELISA Kit is an indispensable tool for researchers exploring the role of dysbindin in bovine health and disease, offering reliable and reproducible results that can advance our understanding of neurobiology and inform the development of novel treatments.
Product Name:
Bovine Dysbindin (DTNBP1) ELISA Kit
SKU:
BOEB0731
Size:
96T
Target:
Bovine Dysbindin (DTNBP1)
Synonyms:
Biogenesis of lysosome-related organelles complex 1 subunit 8, Dysbindin-1, Dystrobrevin-binding protein 1, BLOC-1 subunit 8, BLOC1S8
Assay Type:
Sandwich
Detection Method:
ELISA
Reactivity:
Bovine
Intra CV:
Provided with the Kit
Inter CV:
Provided with the Kit
Linearity:
Provided with the Kit
Recovery:
Provided with the Kit
Function:
Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes. In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Associates with the BLOC-2 complex to facilitate the transport of TYRP1 independent of AP-3 function. Plays a role in synaptic vesicle trafficking and in neurotransmitter release. Plays a role in the regulation of cell surface exposure of DRD2. May play a role in actin cytoskeleton reorganization and neurite outgrowth. May modulate MAPK8 phosphorylation. Appears to promote neuronal transmission and viability through regulating the expression of SNAP25 and SYN1, modulating PI3-kinase-Akt signaling and influencing glutamatergic release. Regulates the expression of SYN1 through binding to its promoter. Modulates prefrontal cortical activity via the dopamine/D2 pathway.
Uniprot:
Q2HJA5
Sample Type:
Serum, plasma, tissue homogenates, cell culture supernates and other biological fluids
Specificity:
Natural and recombinant bovine Dysbindin
Sub Unit:
Interacts (via its coiled coil domain) with KXD1. Interacts with CMYA5, PI4K2 and RNF151 (By similarity). Component of the biogenesis of lysosome-related organelles complex 1 (BLOC-1) composed of at least BLOC1S1, BLOC1S2, BLOC1S3, BLOC1S4, BLOC1S5, BLOC1S6, DTNBP1/BLOC1S7 and SNAPIN/BLOC1S8. Interacts directly in the complex with BLOC1S5, BLOC1S6 and SNAPIN/BLOC1S8. The BLOC-1 complex associates with the AP-3 protein complex and membrane protein cargos. This BLOC-1 complex also associates with the BLOC-2 complex in endosomes. Binds to DTNA and DTNB but may not be a physiological binding partner Interacts with the DNA-dependent protein kinase complex DNA-PK; the interaction phosphorylates DTNBP1 in vitro. Interacts directly in this complex with XRCC5 and XRCC6. Interacts with AP3M1, AP3B2 and TRIM32. Interacts with XPO1; the interaction exports DTNBP1 out of the nucleus.
Subcellular Location:
Cytoplasm Cytoplasmic vesicle membrane Peripheral membrane protein Cytoplasmic side Cytoplasmic vesicle Secretory vesicle Synaptic vesicle membrane Peripheral membrane protein Cytoplasmic side Endosome membrane Peripheral membrane protein Cytoplasmic side Melanosome membrane Peripheral membrane protein Cytoplasmic side Nucleus Cell junction Synapse Postsynaptic cell membrane Postsynaptic density Cell junction Synapse Presynaptic cell membrane Endoplasmic reticulum Mainly cytoplasmic but shuttles between the cytoplasm and nucleus. Exported out of the nucleus via its NES in a XPO1-dependent manner. Nuclear localization is required for regulation of the expression of genes such as SYN1 (By similarity). Detected in neuron cell bodies, axons and dendrites. Detected at synapses, at postsynaptic density, at presynaptic vesicle membranes and microtubules. Detected at tubulovesicular elements in the vicinity of the Golgi apparatus and of melanosomes. Occasionally detected at the membrane of pigmented melanosomes in cultured melanoma cells. The BLOC-1 complex associates with the BLOC-2 complex in early endosome-associated tubules. Associated with the AP-3 complex at presynaptic terminals (By similarity).
Storage:
Please see kit components below for exact storage details
Note:
For research use only
UniProt Protein Function:
Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and melanosomes. In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Associates with the BLOC-2 complex to facilitate the transport of TYRP1 independent of AP-3 function. Plays a role in synaptic vesicle trafficking and in neurotransmitter release. Plays a role in the regulation of cell surface exposure of DRD2. May play a role in actin cytoskeleton reorganization and neurite outgrowth. May modulate MAPK8 phosphorylation. Appears to promote neuronal transmission and viability through regulating the expression of SNAP25 and SYN1, modulating PI3-kinase-Akt signaling and influencing glutamatergic release. Regulates the expression of SYN1 through binding to its promoter. Modulates prefrontal cortical activity via the dopamine/D2 pathway ().
Biogenesis of lysosome-related organelles complex 1 subunit 8; BLOC-1 subunit 8; Dysbindin-1; Dystrobrevin-binding protein 1
Protein Family:
Dysbindin
UniProt Gene Name:
DTNBP1
UniProt Entry Name:
Component
Quantity (96 Assays)
Storage
ELISA Microplate (Dismountable)
8×12 strips
-20°C
Lyophilized Standard
2
-20°C
Sample Diluent
20ml
-20°C
Assay Diluent A
10mL
-20°C
Assay Diluent B
10mL
-20°C
Detection Reagent A
120µL
-20°C
Detection Reagent B
120µL
-20°C
Wash Buffer
30mL
4°C
Substrate
10mL
4°C
Stop Solution
10mL
4°C
Plate Sealer
5
-
Other materials and equipment required:
Microplate reader with 450 nm wavelength filter
Multichannel Pipette, Pipette, microcentrifuge tubes and disposable pipette tips
Incubator
Deionized or distilled water
Absorbent paper
Buffer resevoir
*Note: The below protocol is a sample protocol. Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Allow all reagents to reach room temperature (Please do not dissolve the reagents at 37°C directly). All the reagents should be mixed thoroughly by gently swirling before pipetting. Avoid foaming. Keep appropriate numbers of strips for 1 experiment and remove extra strips from microtiter plate. Removed strips should be resealed and stored at -20°C until the kits expiry date. Prepare all reagents, working standards and samples as directed in the previous sections. Please predict the concentration before assaying. If values for these are not within the range of the standard curve, users must determine the optimal sample dilutions for their experiments. We recommend running all samples in duplicate.
Step
1.
Add Sample: Add 100µL of Standard, Blank, or Sample per well. The blank well is added with Sample diluent. Solutions are added to the bottom of micro ELISA plate well, avoid inside wall touching and foaming as possible. Mix it gently. Cover the plate with sealer we provided. Incubate for 120 minutes at 37°C.
2.
Remove the liquid from each well, don't wash. Add 100µL of Detection Reagent A working solution to each well. Cover with the Plate sealer. Gently tap the plate to ensure thorough mixing. Incubate for 1 hour at 37°C. Note: if Detection Reagent A appears cloudy warm to room temperature until solution is uniform.
3.
Aspirate each well and wash, repeating the process three times. Wash by filling each well with Wash Buffer (approximately 400µL) (a squirt bottle, multi-channel pipette,manifold dispenser or automated washer are needed). Complete removal of liquid at each step is essential. After the last wash, completely remove remaining Wash Buffer by aspirating or decanting. Invert the plate and pat it against thick clean absorbent paper.
4.
Add 100µL of Detection Reagent B working solution to each well. Cover with the Plate sealer. Incubate for 60 minutes at 37°C.
5.
Repeat the wash process for five times as conducted in step 3.
6.
Add 90µL of Substrate Solution to each well. Cover with a new Plate sealer and incubate for 10-20 minutes at 37°C. Protect the plate from light. The reaction time can be shortened or extended according to the actual color change, but this should not exceed more than 30 minutes. When apparent gradient appears in standard wells, user should terminatethe reaction.
7.
Add 50µL of Stop Solution to each well. If color change does not appear uniform, gently tap the plate to ensure thorough mixing.
8.
Determine the optical density (OD value) of each well at once, using a micro-plate reader set to 450 nm. User should open the micro-plate reader in advance, preheat the instrument, and set the testing parameters.
9.
After experiment, store all reagents according to the specified storage temperature respectively until their expiry.
When carrying out an ELISA assay it is important to prepare your samples in order to achieve the best possible results. Below we have a list of procedures for the preparation of samples for different sample types.
Sample Type
Protocol
Serum
If using serum separator tubes, allow samples to clot for 30 minutes at room temperature. Centrifuge for 10 minutes at 1,000x g. Collect the serum fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. If serum separator tubes are not being used, allow samples to clot overnight at 2-8°C. Centrifuge for 10 minutes at 1,000x g. Remove serum and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles.
Plasma
Collect plasma using EDTA or heparin as an anticoagulant. Centrifuge samples at 4°C for 15 mins at 1000 × g within 30 mins of collection. Collect the plasma fraction and assay promptly or aliquot and store the samples at -80°C. Avoid multiple freeze-thaw cycles. Note: Over haemolysed samples are not suitable for use with this kit.
Urine & Cerebrospinal Fluid
Collect the urine (mid-stream) in a sterile container, centrifuge for 20 mins at 2000-3000 rpm. Remove supernatant and assay immediately. If any precipitation is detected, repeat the centrifugation step. A similar protocol can be used for cerebrospinal fluid.
Cell culture supernatant
Collect the cell culture media by pipette, followed by centrifugation at 4°C for 20 mins at 1500 rpm. Collect the clear supernatant and assay immediately.
Cell lysates
Solubilize cells in lysis buffer and allow to sit on ice for 30 minutes. Centrifuge tubes at 14,000 x g for 5 minutes to remove insoluble material. Aliquot the supernatant into a new tube and discard the remaining whole cell extract. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Tissue homogenates
The preparation of tissue homogenates will vary depending upon tissue type. Rinse tissue with 1X PBS to remove excess blood & homogenize in 20ml of 1X PBS (including protease inhibitors) and store overnight at ≤ -20°C. Two freeze-thaw cycles are required to break the cell membranes. To further disrupt the cell membranes you can sonicate the samples. Centrifuge homogenates for 5 mins at 5000xg. Remove the supernatant and assay immediately or aliquot and store at -20°C or -80°C.
Tissue lysates
Rinse tissue with PBS, cut into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS. Add an equal volume of RIPA buffer containing protease inhibitors and lyse tissues at room temperature for 30 minutes with gentle agitation. Centrifuge to remove debris. Quantify total protein concentration using a total protein assay. Assay immediately or aliquot and store at ≤ -20 °C.
Breast Milk
Collect milk samples and centrifuge at 10,000 x g for 60 min at 4°C. Aliquot the supernatant and assay. For long term use, store samples at -80°C. Minimize freeze/thaw cycles.