ABL1 (Phospho-Thr735) Colorimetric Cell-Based ELISA Kit
- SKU:
- CBCAB01639
- Product Type:
- ELISA Kit
- ELISA Type:
- Cell Based Phospho Specific
- Research Area:
- Cell Death
- Reactivity:
- Human
- Mouse
- Rat
- Detection Method:
- Colorimetric
Description
ABL1 (Phospho-Thr735)Colorimetric Cell-Based ELISA Kit
The ABL1 Phospho (Tyr735) Colorimetric Cell-Based ELISA Kit is a powerful tool for the accurate measurement of ABL1 phosphorylation at Tyr735 in cell lysates. This kit offers high sensitivity and specificity, allowing for precise and reliable quantification of phosphorylated ABL1 levels in a variety of experimental settings.ABL1 is a critical protein kinase involved in cell growth, differentiation, and survival. Phosphorylation of ABL1 at Tyr735 is known to play a key role in various signaling pathways, including those regulating cell proliferation and migration.
Dysregulation of ABL1 phosphorylation has been implicated in cancer development and progression, making it an important target for therapeutic intervention.With its easy-to-use format and rapid processing time, the ABL1 Phospho (Tyr735) Colorimetric Cell-Based ELISA Kit is an essential tool for researchers studying ABL1 signaling pathways and exploring potential therapeutic strategies for cancer and other related diseases.
Product Name: | ABL1 (Phospho-Thr735) Colorimetric Cell-Based ELISA |
Product Code: | CBCAB01639 |
ELISA Type: | Cell-Based |
Target: | ABL1 (Phospho-Thr735) |
Reactivity: | Human, Mouse, Rat |
Dynamic Range: | > 5000 Cells |
Detection Method: | Colorimetric 450 nm |
Format: | 2 x 96-Well Microplates |
The ABL1 (Phospho-Thr735) Colorimetric Cell-Based ELISA Kit is a convenient, lysate-free, high throughput and sensitive assay kit that can detect ABL1 protein phosphorylation and expression profile in cells. The kit can be used for measuring the relative amounts of phosphorylated ABL1 in cultured cells as well as screening for the effects that various treatments, inhibitors (ie. siRNA or chemicals), or activators have on ABL1 phosphorylation.
Qualitative determination of ABL1 (Phospho-Thr735) concentration is achieved by an indirect ELISA format. In essence, ABL1 (Phospho-Thr735) is captured by ABL1 (Phospho-Thr735)-specific primary (1ø) antibodies while the HRP-conjugated secondary (2ø) antibodies bind the Fc region of the 1ø antibody. Through this binding, the HRP enzyme conjugated to the 2ø antibody can catalyze a colorimetric reaction upon substrate addition. Due to the qualitative nature of the Cell-Based ELISA, multiple normalization methods are needed:
1. | A monoclonal antibody specific for human GAPDH is included to serve as an internal positive control in normalizing the target absorbance values. |
2. | Following the colorimetric measurement of HRP activity via substrate addition, the Crystal Violet whole-cell staining method may be used to determine cell density. After staining, the results can be analysed by normalizing the absorbance values to cell amounts, by which the plating difference can be adjusted. |
Database Information: | Gene ID: 25, UniProt ID: P00519, OMIM: 189980/608232, Unigene: Hs.431048 |
Gene Symbol: | ABL1 |
Sub Type: | Phospho |
UniProt Protein Function: | Non-receptor tyrosine-protein kinase that plays a role in many key processes linked to cell growth and survival such as cytoskeleton remodeling in response to extracellular stimuli, cell motility and adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis. Coordinates actin remodeling through tyrosine phosphorylation of proteins controlling cytoskeleton dynamics like WASF3 (involved in branch formation); ANXA1 (involved in membrane anchoring); DBN1, DBNL, CTTN, RAPH1 and ENAH (involved in signaling); or MAPT and PXN (microtubule-binding proteins). Phosphorylation of WASF3 is critical for the stimulation of lamellipodia formation and cell migration. Involved in the regulation of cell adhesion and motility through phosphorylation of key regulators of these processes such as BCAR1, CRK, CRKL, DOK1, EFS or NEDD9. Phosphorylates multiple receptor tyrosine kinases and more particularly promotes endocytosis of EGFR, facilitates the formation of neuromuscular synapses through MUSK, inhibits PDGFRB-mediated chemotaxis and modulates the endocytosis of activated B-cell receptor complexes. Other substrates which are involved in endocytosis regulation are the caveolin (CAV1) and RIN1. Moreover, ABL1 regulates the CBL family of ubiquitin ligases that drive receptor down-regulation and actin remodeling. Phosphorylation of CBL leads to increased EGFR stability. Involved in late-stage autophagy by regulating positively the trafficking and function of lysosomal components. ABL1 targets to mitochondria in response to oxidative stress and thereby mediates mitochondrial dysfunction and cell death. ABL1 is also translocated in the nucleus where it has DNA-binding activity and is involved in DNA-damage response and apoptosis. Many substrates are known mediators of DNA repair: DDB1, DDB2, ERCC3, ERCC6, RAD9A, RAD51, RAD52 or WRN. Activates the proapoptotic pathway when the DNA damage is too severe to be repaired. Phosphorylates TP73, a primary regulator for this type of damage-induced apoptosis. Phosphorylates the caspase CASP9 on 'Tyr-153' and regulates its processing in the apoptotic response to DNA damage. Phosphorylates PSMA7 that leads to an inhibition of proteasomal activity and cell cycle transition blocks. ABL1 acts also as a regulator of multiple pathological signaling cascades during infection. Several known tyrosine-phosphorylated microbial proteins have been identified as ABL1 substrates. This is the case of A36R of Vaccinia virus, Tir (translocated intimin receptor) of pathogenic E.coli and possibly Citrobacter, CagA (cytotoxin-associated gene A) of H.pylori, or AnkA (ankyrin repeat-containing protein A) of A.phagocytophilum. Pathogens can highjack ABL1 kinase signaling to reorganize the host actin cytoskeleton for multiple purposes, like facilitating intracellular movement and host cell exit. Finally, functions as its own regulator through autocatalytic activity as well as through phosphorylation of its inhibitor, ABI1. |
NCBI Summary: | This gene is a protooncogene that encodes a protein tyrosine kinase involved in a variety of cellular processes, including cell division, adhesion, differentiation, and response to stress. The activity of the protein is negatively regulated by its SH3 domain, whereby deletion of the region encoding this domain results in an oncogene. The ubiquitously expressed protein has DNA-binding activity that is regulated by CDC2-mediated phosphorylation, suggesting a cell cycle function. This gene has been found fused to a variety of translocation partner genes in various leukemias, most notably the t(9;22) translocation that results in a fusion with the 5' end of the breakpoint cluster region gene (BCR; MIM:151410). Alternative splicing of this gene results in two transcript variants, which contain alternative first exons that are spliced to the remaining common exons. [provided by RefSeq, Aug 2014] |
UniProt Code: | P00519 |
NCBI GenInfo Identifier: | 85681908 |
NCBI Gene ID: | 25 |
NCBI Accession: | P00519.4 |
UniProt Secondary Accession: | P00519,Q13869, Q13870, Q16133, Q17R61, Q45F09, A3KFJ3 |
UniProt Related Accession: | P00519 |
Molecular Weight: | 124,955 Da |
NCBI Full Name: | Tyrosine-protein kinase ABL1 |
NCBI Synonym Full Names: | ABL proto-oncogene 1, non-receptor tyrosine kinase |
NCBI Official Symbol: | ABL1Â Â |
NCBI Official Synonym Symbols: | ABL; JTK7; p150; c-ABL; v-abl; c-ABL1; bcr/abl  |
NCBI Protein Information: | tyrosine-protein kinase ABL1 |
UniProt Protein Name: | Tyrosine-protein kinase ABL1 |
UniProt Synonym Protein Names: | Abelson murine leukemia viral oncogene homolog 1; Abelson tyrosine-protein kinase 1; Proto-oncogene c-Abl; p150 |
Protein Family: | Tyrosine-protein kinase |
UniProt Gene Name: | ABL1Â Â |
UniProt Entry Name: | ABL1_HUMAN |
Component | Quantity |
96-Well Cell Culture Clear-Bottom Microplate | 2 plates |
10X TBS | 24 mL |
Quenching Buffer | 24 mL |
Blocking Buffer | 50 mL |
15X Wash Buffer | 50 mL |
Primary Antibody Diluent | 12 mL |
100x Anti-Phospho Target Antibody | 60 µL |
100x Anti-Target Antibody | 60 µL |
Anti-GAPDH Antibody | 60 µL |
HRP-Conjugated Anti-Rabbit IgG Antibody | 12 mL |
HRP-Conjugated Anti-Mouse IgG Antibody | 12 mL |
SDS Solution | 12 mL |
Stop Solution | 24 mL |
Ready-to-Use Substrate | 12 mL |
Crystal Violet Solution | 12 mL |
Adhesive Plate Seals | 2 seals |
The following materials and/or equipment are NOT provided in this kit but are necessary to successfully conduct the experiment:
- Microplate reader able to measure absorbance at 450 nm and/or 595 nm for Crystal Violet Cell Staining (Optional)
- Micropipettes with capability of measuring volumes ranging from 1 µL to 1 ml
- 37% formaldehyde (Sigma Cat# F-8775) or formaldehyde from other sources
- Squirt bottle, manifold dispenser, multichannel pipette reservoir or automated microplate washer
- Graph paper or computer software capable of generating or displaying logarithmic functions
- Absorbent papers or vacuum aspirator
- Test tubes or microfuge tubes capable of storing ≥1 ml
- Poly-L-Lysine (Sigma Cat# P4832 for suspension cells)
- Orbital shaker (optional)
- Deionized or sterile water
*Note: Protocols are specific to each batch/lot. For the correct instructions please follow the protocol included in your kit.
Step | Procedure |
1. | Seed 200 µL of 20,000 adherent cells in culture medium in each well of a 96-well plate. The plates included in the kit are sterile and treated for cell culture. For suspension cells and loosely attached cells, coat the plates with 100 µL of 10 µg/ml Poly-L-Lysine (not included) to each well of a 96-well plate for 30 minutes at 37 °C prior to adding cells. |
2. | Incubate the cells for overnight at 37 °C, 5% CO2. |
3. | Treat the cells as desired. |
4. | Remove the cell culture medium and rinse with 200 µL of 1x TBS, twice. |
5. | Fix the cells by incubating with 100 µL of Fixing Solution for 20 minutes at room temperature. The 4% formaldehyde is used for adherent cells and 8% formaldehyde is used for suspension cells and loosely attached cells. |
6. | Remove the Fixing Solution and wash the plate 3 times with 200 µL 1x Wash Buffer for five minutes each time with gentle shaking on the orbital shaker. The plate can be stored at 4 °C for a week. |
7. | Add 100 µL of Quenching Buffer and incubate for 20 minutes at room temperature. |
8. | Wash the plate 3 times with 1x Wash Buffer for 5 minutes each time. |
9. | Add 200 µL of Blocking Buffer and incubate for 1 hour at room temperature. |
10. | Wash 3 times with 200 µL of 1x Wash Buffer for 5 minutes each time. |
11. | Add 50 µL of 1x primary antibodies Anti-ABL1 (Phospho-Thr735) Antibody, Anti-ABL1 Antibody and/or Anti-GAPDH Antibody) to the corresponding wells, cover with Parafilm and incubate for 16 hours (overnight) at 4 °C. If the target expression is known to be high, incubate for 2 hours at room temperature. |
12. | Wash 3 times with 200 µL of 1x Wash Buffer for 5 minutes each time. |
13. | Add 50 µL of 1x secondary antibodies (HRP-Conjugated AntiRabbit IgG Antibody or HRP-Conjugated Anti-Mouse IgG Antibody) to corresponding wells and incubate for 1.5 hours at room temperature. |
14. | Wash 3 times with 200 µL of 1x Wash Buffer for 5 minutes each time. |
15. | Add 50 µL of Ready-to-Use Substrate to each well and incubate for 30 minutes at room temperature in the dark. |
16. | Add 50 µL of Stop Solution to each well and read OD at 450 nm immediately using the microplate reader. |
(Additional Crystal Violet staining may be performed if desired – details of this may be found in the kit technical manual.)